ELECTRONIC SUPPLEMENTARY INFORMATION

N-Amidothiourea Based PET Chemosensors for Anions

Wen-Xia Liu and Yun-Bao Jiang*

Department of Chemistry, College of Chemistry and Chemical Engineering, and the MOE Key Laboratory of Analytical Sciences, Xiamen University, Xiamen 361005, China

E-mail: ybjiang@xmu.edu.cn; Tel./Fax: +86 592 218 5662
Figure S1. Portion of 2D COSY spectrum of N-acetamidothiourea and summary of COSY observed in CD$_3$CN. This spectrum was taken as a reference for assigning –NH NMR signals of I-3.
Figure S2. Job plot for binding of 2 with AcO\(^-\) in MeCN. The fluorescence intensity is the difference of fluorescence intensity of AcO\(^-\)/2 mixture and that of 2. Total concentration of AcO\(^-\) and 2 is 8.55 \(\times\) 10\(^{-6}\) mol L\(^{-1}\).

Figure S3. Stern-Volmer plots for quenching of sensors 1-3 fluorescence by AcO\(^-\), F\(^-\) and H\(_2\)PO\(_4\)\(^-\), respectively, in MeCN.
N-(1-Pyrenebutanamide)-$N'-(p$-tolyl)thiourea (1): 1H NMR (400 MHz, DMSO-d_6).

N-(1-Pyrenebutanamide)-$N'-(p$-tolyl)thiourea (1): 13C NMR (100 MHz, DMSO-d_6).
N-(1-Pyrenebutanamide)-N'-phenylthiourea (2): 1H NMR (400 MHz, DMSO-d_6).

N-(1-Pyrenebutanamide)-N'-phenylthiourea (2): 13C NMR (100 MHz, DMSO-d_6).
\[\text{N-(1-Pyrenebutanamide)-N’-(m-trifluoromethylphenyl)thiourea (3):} \ \text{^1H NMR (400 MHz, DMSO-}d_6) \].

\[\text{N-(1-Pyrenebutanamide)-N’-(m-trifluoromethylphenyl)thiourea (3):} \ \text{^13C NMR (100 MHz, DMSO-}d_6) \].

6