Supporting information for

Synthesis and evaluation of 2-(2-fluoro-4-hydroxymethyl-5-methoxy-phenoxy) acetic acid as linker in solid-phase synthesis monitored by 19F gel-phase NMR spectroscopy

Fredrik K. Wallner, a Sara Spjut, a Dan Boström b and Mikael Elofsson a

a Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden.

b Energy Technology and Thermal Process Chemistry, Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden.

* Corresponding author: Mikael Elofsson, Fax: +4690 13 88 85; Tel: +4690 786 93 28; E-mail: mikael.elofsson@chem.umu.se

Contents

X-ray crystallography

General p 2
Crystallisation of 11 and 13 p 2
Figure 1, structure of 11 p 2
Figure 2, structure of 13 p 2
Table 1, crystal data for 11 and 13 p 3
Gel-phase 19F NMR spectra for substance 18, 21, 23, 26 and 27
Figure 3, 18 p 4
Figure 4, 21 p 4
Figure 5, 23 p 5
Figure 6, 26 p 5
Figure 7, 27 p 6
References p 6
X-ray crystallography

X-ray crystal structures were determined from data collected with a Nonius KappaCCD area detector diffractometer, using graphite monochromatized MoKα. Solution of the structures were made by direct methods and refinements on F2. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were isotropically refined on calculated positions (riding model).

Crystallization of 11 and 13

From a different batch both 11 and the dimer 13 were purified by preparative LC/MS. Crystallisation from heptane, for 11, or EtOH, for 13, gave thin needles. X-ray diffraction on the crystals showed the expected structures.

Figure 1. Single crystal X-ray structure of compound 11 (two crystallographical non-identical molecules), with displacement ellipsoids of non-hydrogen atoms drawn at the 50% probability level and hydrogen atoms of arbitrary size (ATOMS).

Figure 2. Single crystal X-ray structure of compound 13 with displacement ellipsoids of non-hydrogen atoms drawn at the 50% probability level and hydrogen atoms of arbitrary size (ATOMS). The compound has imposed twofold symmetry with the central oxygen on the twofold axis.
Table 1. Crystal data for 11 and 13.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C12 H15 F O5</td>
<td>C24 H28 F2 O9</td>
</tr>
<tr>
<td>Formula weight</td>
<td>258.245</td>
<td>498.477</td>
</tr>
<tr>
<td>Temperature of data collection</td>
<td>100K</td>
<td>298K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
<td>P b c n</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 4.7854(6)</td>
<td>a = 13.7696(5)</td>
</tr>
<tr>
<td></td>
<td>b = 11.316(2)</td>
<td>b = 8.3551(2)</td>
</tr>
<tr>
<td></td>
<td>c = 22.705(3)</td>
<td>c = 20.4951(6)</td>
</tr>
<tr>
<td></td>
<td>α = 80.348(8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β = 86.525(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ = 86.318(7)</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>1208.0(3)</td>
<td>2357.89(12)</td>
</tr>
</tbody>
</table>
Gel-phase 19F NMR spectra for substance 18, 21, 23, 26 and 27.

Figure 3. Gel-phase 19F NMR spectrum for 18.

Figure 4. Gel-phase 19F NMR spectrum for 21.
Figure 5. Gel-phase 19F NMR spectrum for 23.

Figure 6. Gel-phase 19F NMR spectrum for 26.
Figure 7. Gel-phase 19F NMR spectrum for 27.

References