Supporting Information

Molecular Inclusion of Organometallic Sandwich Complexes within Hybrid Cavitand-resorcin[4]arene Receptors

María Ángeles Sarmentero and Pablo Ballester
[ICIQ], 43007 Tarragona (Spain). [ICREA], Pg. Lluis Companys 23, 08010 Barcelona (Spain).

List of Contents

Figure S1 Structure of substrate and the receptors 2a and 2b

Fluorescence titrations
Figure S2 Fluorescence titration between 6− and 2a in MeOH.
Figure S3 Fluorescence titration of 2a@6+ by addition of 1a+ in MeOH.

1H-NMR studies
Figure S4 1H NMR titration of 2a with 4+ in MeOH-d4
Figure S5 1H NMR titration of 2b with 4+ in acetone-d6
Figure S6 1H NMR titration of 2b with 7+ in acetone-d6
Figure S7 1H NMR titration of 2b with 8+ in acetone-d6
Figure S8 1H NMR spectra of 2a and 2b with 9a in MeOH-d4
Figure S9 1H NMR spectra of 2b and 2b with 9a in acetone-d6
ITC studies

Figure S10 Calorimetric titration between 1a⁺ and 2b

Cyclic voltammetry

Scheme 1 Electrochemical and chemical equilibria for 1a⁺ with non-electroactive 2a or 2b

Figure S11 Cyclic voltammetry of 2b and 2b in presence of 1a⁺

Diffusion coefficients

Figure S12 Calculation of the diffusion coefficients of 1a⁺

Figure S13 Calculation of the diffusion coefficients of 1a⁺ within cavitand 2a

Figure S1. Structure of substrates and the receptors 2a-b.
Fluorescence titrations

Figure S2. Fluorescence titration of 6^+ (8.25 × 10^{-6} M) in MeOH upon addition of incremental amounts of $2a$.

$2a$
6^+
$2a \cdot 6^+$

R= CH$_2$CH$_3$

$y = (0.8 \times 10^4) x + 0.9642$

$K_c = 1 \pm 0.2 \times 10^4 \text{M}^{-1}$
Figure S3. Fluorescence titrations of 6^+ (0.24 mM) in MeOH in the presence of $2a$ (0.15 mM) and upon addition of incremental amounts of $1a^+$.

1H NMR titrations

Figure S4. NMR titration of $2a$ ([2a] = 4.48 mM) with 4^+ in MeOH-d_4.

- S4 -
Figure S5. NMR titration of 2b ([2b] = 2.80 mM) with 4+ in acetone-d$_6$.

Figure S6. NMR titration of 2b ([2b] = 2.64 mM) with 7+ in acetone-d$_6$.

Figure S7. NMR titration of 2b ([2b] = 4.20 mM) with 8+ in acetone-d$_6$.

$K_a = 1.7 \pm 0.2 \times 10^7$ M$^{-1}$

$K_a = 2.3 \pm 0.7 \times 10^2$ M$^{-1}$

$K_a = 1.4 \pm 0.2 \times 10^2$ M$^{-1}$
Figure S8. NMR spectra of 2a ([2a] = 2.50 mM) and 2a with 3 equivalents of 9a in MeOH-d_4.

Figure S9. NMR spectra of 2b ([2b] = 4.50 mM) and 2b with 3 equivalents of 9a in acetone-d_6.
ITC titration.

Figure S10: Calorimetric titration between the receptor or 2b ([2b] = 10 mM in acetone) and 1a$^+$ seven times more concentrated than the corresponding receptor.
Cyclic voltammetry

Scheme S1: Coupled electrochemical and chemical equilibria for the cobaltocenium $1a^+$ forming supramolecular complexes with non-electroactive hosts $2a$ or $2b$.

Figure S11: Cyclic voltammetric behavior on glass carbon (0.071 cm2) of 1.0 mM $2b$ in acetone also containing 0.1 M tetraoctylammonium bromide (a) and after each addition (b) 0.5 (c) 1.5 (d) 4.0 eq) of cobaltocenium $1a^-$. Scan rate 100 mV/s.
Diffusion coefficients

Figure S12: Representation of I vs $v^{1/2}$ of a 1.0 mM solution of 1a$^+$.

\[y = 26.988x \]
\[R^2 = 0.9938 \]
\[D = 1.43 \times 10^{-6} \text{ cm}^2/\text{s} \]

Figure S13: Representation of I vs $v^{1/2}$ of a 1.0 mM solution of 1a$^+$ with 2 equivalents of 2a.

\[y = 5.7768x \]
\[R^2 = 0.9789 \]
\[D = 3.52 \times 10^{-7} \text{ cm}^2/\text{s} \]