Electronic supplementary information (ESI)

RNA selective cross-pairing of backbone extended pyrrolidine-amide oligonucleotide mimics (bePOMs).

Roberta J. Worthington, Neil M. Bell, Raymond Wong and Jason Micklefield*

School of Chemistry and Manchester Interdisciplinary Biocentre,
The University of Manchester, 131 Princess Street, Manchester, M1 7DN

Contents

Figure S1. HPLC Traces of crude POM, bePOM I & II
Figure S2. UV melting curves POM vs r(CGCA8CGC)
Figure S3. UV melting curves POM vs Poly(rA)
Figure S4. UV melting curves POM vs Poly(dA)
Figure S5. UV melting curves POM vs d(CGCA8CGC)
Figure S6. UV melting curves bePOM I vs r(CGCA8CGC)
Figure S7. UV melting curves bePOM I vs d(CGCA8CGC)
Figure S8. UV melting curves bePOM I vs Poly(rA) and d(A)
Figure S9. UV melting curves bePOM II vs r(CGCA8CGC)
Figure S10. UV melting curves bePOM II vs Poly(rA)
Figure S11. UV melting curves bePOM II vs Poly(dA) and d(CGCA8CGC)
Figure S12. CD spectra DNA and RNA single strands
Figure S13. CD spectra of bePOM I & II (28 & 29) vs d(CGCA8CGC)
Figure S1. HPLC trace of crude: (A) POM Lys-(T)₈-NH₂ 27; (B) bePOM I Lys-(T)₈-NH₂ 28; (C) bePOM II Lys-(T)₈-NH₂ 29.
Figure S2. UV thermal denaturation/renaturation curves and first derivatives for POM Lys-(T)$_8$-NH$_2$ 27 vs. r(CGCA$_8$CGC) at 7.6 µM (total conc. in strands, 1:1 ratio of strands) and 10 mM K$_2$HPO$_4$, 0.12 M K$^+$, pH 7.0 (total volume 1.0 cm3): (A) slow heating (denaturation) curves and cooling (renaturation) curves for POM 27 vs. r(CGCA$_8$CGC); (B) the corresponding first derivatives for POM 27 vs. r(CGCA$_8$CGC).
Figure S3. UV thermal denaturation/renaturation curves and first derivatives for POM Lys-(T)$_{8}$-NH$_{2}$ 27 vs. poly (rA) at 7.6 µM (total conc. in strands, 1:1 ratio of strands) and 10 mM K$_{2}$HPO$_{4}$, 0.12 M K$^{+}$, pH 7.0 (total volume 1.0 cm3): (A) shows slow heating (denaturation) in green and slow cooling (renaturation) curves in blue (0.2 °C/min). The slow heating (denaturation) (0.2 °C/min) curve following pre-incubation at room temperature for 24 h is shown in red for POM 27 vs. poly(rA); (B) the corresponding first derivatives for POM 27 vs. poly(rA).
Figure S4. UV thermal denaturation/renaturation curves and first derivatives for POM Lys-(T)$_8$-NH$_2$ 27 vs. poly (dA) at 7.6 μM (total conc. in strands, 1:1 ratio of strands) and 10 mM K$_2$HPO$_4$, 0.12 M K$^+$, pH 7.0 (total volume 1.0 cm3): (A) shows slow heating (denaturation) in green and slow cooling (renaturation) curves in blue (0.2 °C/min). The slow heating (denaturation) (0.2 °C/min) curve following pre-incubation at room temperature for 24 h is shown in red for POM 27 vs. poly(dA); (B) the corresponding first derivatives for POM 27 vs. poly(dA).
Figure S5. UV thermal denaturation/renaturation curves and first derivatives for POM Lys-(T)$_8$-NH$_2$ 27 vs. d(CGCA$_8$CGC) at 7.6 µM (total conc. in strands, 1:1 ratio of strands) and 10 mM K$_2$HPO$_4$, 0.12 M K$^+$, pH 7.0 (total volume 1.0 cm3): (A) shows slow heating (denaturation) in green and slow cooling (renaturation) curves in blue (0.2 °C/min). The slow heating (denaturation) (0.2 °C/min) curve following pre-incubation at room temperature for 24 h is shown in red for POM 27 vs. d(CGCA$_8$CGC); (B) the corresponding first derivatives for POM 27 vs. d(CGCA$_8$CGC).
Figure S6. UV thermal denaturation/renaturation curves and first derivatives for bePOM I Lys-(T)_{8}-NH2 28 vs. r(CGCA_{8}CGC) at 7.6 μM (total conc. in strands, 1:1 ratio of strands) and 10 mM K_{2}HPO_{4}, 0.12 M K^{+}, pH 7.0 (total volume 1.0 cm3): (A) shows slow heating (denaturation) in green and slow cooling (renaturation) curves in blue (0.2 °C/min). The slow heating (denaturation) (0.2 °C/min) curve following pre-incubation at room temperature for 24 h is shown in red for POM 28 vs. r(CGCA_{8}CGC); (B) the corresponding first derivatives for POM 28 vs. r(CGCA_{8}CGC).
Figure S7. UV thermal denaturation/renaturation curves for bePOM I Lys-(T)₈-NH₂ 28 vs. d(CGCA₈CGC) at 7.6 µM (total conc. in strands, 1:1 ratio of strands) and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³): (A) slow heating (denaturation) curves after 24 hr incubation, cooling (renaturation) curves for POM 28 vs. d(CGCA₈CGC). Transitions are not evident and no 1st derivatives could be calculated.
Figure S8. UV thermal denaturation/renaturation curves bePOM I Lys-(T)$_8$-NH$_2$ 28 vs. poly(rA) and poly (dA) at 7.6 µM (total conc. in strands, 1:1 ratio of strands) and 10 mM K$_2$HPO$_4$, 0.12 M K$,^+,$ pH 7.0 (total volume 1.0 cm3): (A) slow heating (denaturation) curves after 24 hr incubation, cooling (renaturation) curves for POM 28 vs. poly(rA); (B) slow heating (denaturation) curves after 24 hr incubation, cooling (renaturation) curves for POM 28 vs. poly(dA). Transitions are not evident and no 1st derivatives could be calculated.
Figure S9. UV thermal denaturation/renaturation curves and first derivatives for bePOM II Lys-(T)$_8$-NH$_2$ 29 vs. r(CGCA$_8$CGC) at 7.6 μM (total conc. in strands, 1:1 ratio of strands) and 10 mM K$_2$HPO$_4$, 0.12 M K$^+$, pH 7.0 (total volume 1.0 cm3): (A) slow heating (denaturation) curves and cooling (renaturation) curves for POM 29 vs. r(CGCA$_8$CGC); (B) the corresponding first derivatives for POM 29 vs. r(CGCA$_8$CGC).
Figure S10. UV thermal denaturation/renaturation curves and first derivatives for bePOM II Lys-(T)$_8$-NH$_2$ 29 vs. poly(rA) at 7.6 µM (total conc. in strands, 1:1 ratio of strands) and 10 mM K$_2$HPO$_4$, 0.12 M K$^+$, pH 7.0 (total volume 1.0 cm3): (A) shows slow heating (denaturation) in green and slow cooling (renaturation) curves in blue (0.2 °C/min). The slow heating (denaturation) (0.2 °C/min) curve following pre-incubation at room temperature for 24 h is shown in red for POM 29 vs. poly(rA); (B) the corresponding first derivatives for POM 29 vs. poly(rA).
Figure S11. UV thermal denaturation/renaturation curves bePOM II Lys-(T)$_8$-NH$_2$ 29 vs. poly(dA) and d(CGCA$_8$CGC) at 7.6 μM (total conc. in strands, 1:1 ratio of strands) and 10 mM K$_2$HPO$_4$, 0.12 M K$^+$, pH 7.0 (total volume 1.0 cm3): (A) slow heating (denaturation) curves after 24 hr incubation and cooling (renaturation) curves for POM 29 vs. poly(rA); (B) slow heating (denaturation) and cooling curves (renaturation) curves for POM 29 vs. d(CGCA$_8$CGC). Transitions are not evident and no 1st derivatives could be calculated.
Figure S12. CD spectra single strands of poly(rA), poly(dA), d(CGCA₈CGC) and r(CGCA₈CGC) at 7.6 µM and 10 mM K₂HPO₄, 0.12 M K⁺, pH 7.0 (total volume 1.0 cm³).
Figure S13. CD spectra for bePOM I Lys-(T)$_8$-NH$_2$ 28 and bePOM II Lys-(T)$_8$-NH$_2$ 29 vs. d(CGCA$_8$CGC) at 7.6 µM (total conc. in strands, 1:1 ratio of strands) and 10 mM K$_2$HPO$_4$, 0.12 M K$^+$, pH 7.0 (total volume 1.0 cm3): (A) CD spectra of acquired and calculated for POM 28 vs. d(CGCA$_8$CGC); (B) CD spectra of acquired and calculated for POM 29 vs. d(CGCA$_8$CGC).