Electronic Supporting Information

Discovery of New Series of Jatrophane and Lathyrane Diterpenes as Potent and Specific P-Glycoprotein Modulators†

Elisa Barile,a Marianna Borriello,b Attilio Di Pietro,c Agnès Doreau,c Caterina Fattorusso,b Ernesto Fattorusso,b and Virginia Lanzotti*a

aDISTAAM, Università degli Studi del Molise, Via F. De Sanctis, I-86100 Campobasso, Italy. E-mail: lanzotti@unimol.it; Phone: +39 874 404649; Fax: +39 874 404652
bDipartimento di Chimica delle Sostanze Naturali, Università di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
cInstitut de Biologie et Chimie des Protéines, UMR5086 CNRS/Université Lyon1 et IFR128 BioSciences Gerland-Lyon Sud, Passage du Vercors 7, 69367 Lyon Cedex 07, France
†1H NMR spectra for compounds 1–8, purity criteria for isolated compounds, and minimum energy conformations obtained for each stereoisomers of 1.

Contents
S2-S9 1H NMR spectra for compounds 1-8
S10 Purity criteria for target compounds 1,2,4,5,6,8
S11 Fully optimized AM1 conformers of the possible four stereoisomers of 1 at C-8 and C-13 atoms.
S12 Superimposition of two low energy conformers of 8S,13R stereoisomer of 1
Spectrum S1.

1H NMR spectrum of compound 1 (500 MHz, solvent CDCl$_3$)
Spectrum S2.

1H NMR spectrum of compound 2 (500 MHz, solvent CDCl$_3$)
Spectrum S3.

1H NMR spectrum of compound 3 (500 MHz, solvent CDCl$_3$)
Spectrum S4.

1H NMR spectrum of compound 4 (500 MHz, solvent CDCl$_3$)
Spectrum S5.
1H NMR spectrum of compound 5 (500 MHz, solvent CDCl$_3$)
Spectrum S6.
1H NMR spectrum of compound 6 (500 MHz, solvent CDCl$_3$)
Spectrum S7.

1H NMR spectrum of compound 7 (500 MHz, solvent CDCl$_3$)
Spectrum S8.
1H NMR spectrum of compound 8 (500 MHz, solvent CDCl$_3$)
Purity criteria for target compounds. The degree of purity of tested compounds was over 95% as indicated by the appearance of a single peak using two different HPLC eluent systems. Retention times (Rt) are expressed in minutes.

Euphoscopin M (1): Hexane/EtOAc 75:25 with Rt 54.6. CH₂Cl₂/EtOAc 8:2 with Rt 36.4.

Euphoscopin N (2): Hexane/EtOAc 75:25 with Rt 27.9. CH₂Cl₂/EtOAc 8:2 with Rt 18.6.

Euphoscopin C (4): Hexane/EtOAc 85:15 with Rt 75.0. CH₂Cl₂/EtOAc 9:1 with Rt 50.0.

Euphornin (5): Hexane/EtOAc 75:25 with Rt 59.4. CH₂Cl₂/EtOAc 8:2 with Rt 39.6.

Epieuphoscopin B (6): Hexane/EtOAc 8:2 with Rt 24.0. CH₂Cl₂/EtOAc 85:15 with Rt 16.1.

Euphohelioscopin A (8): Hexane/EtOAc 75:25 with Rt 42.0. CH₂Cl₂/EtOAc 8:2 with Rt 28.2.
Figure S1.

A-D. Fully optimized AM1 conformers of the possible four stereoisomers of euphoscopin M (1) at C-8 and C-13 atoms: A) $8R,13R$; B) $8S,13R$; C: $8R,13S$; D $8S,13S$. Atoms are coloured by atom type; hydrogens atoms, with the exceptions of those useful for NMR discussion, are omitted for clarity of presentation.
Figure S2.

Superimposition of two low energy conformers of 8S,13R stereoisomer of euphoscopin M (1). The relation between H-7/H-8 dihedral angle value and the relative orientation of C-7 C-3 substituents is evidenced. Atoms are coloured by atom type; hydrogens atoms, with the exceptions of those discussed in NMR data are omitted for clarity of presentation.