Table 3 Selected NMR data for 18-alkoxy gibberellin derivatives:

<table>
<thead>
<tr>
<th></th>
<th>20a</th>
<th>21a</th>
<th>22a</th>
<th>23a</th>
<th>24a</th>
<th>25a</th>
<th>26a</th>
<th>27a</th>
</tr>
</thead>
<tbody>
<tr>
<td>δH</td>
<td>(J = Hz)</td>
</tr>
<tr>
<td>3</td>
<td>3.98 (m)</td>
<td>3.96 (m)</td>
<td>3.98 (m)</td>
<td>4.00 (m)</td>
<td>3.55 (m)</td>
<td>3.80 (m)</td>
<td>3.90 (m)</td>
<td>3.98 (m)</td>
</tr>
<tr>
<td>5</td>
<td>2.91 (d 9.2)</td>
<td>2.90 (d 9.2)</td>
<td>2.91 (d 8.8)</td>
<td>2.91 (d 9.5)</td>
<td>2.90 (d 9.1)</td>
<td>2.88 (d 10.1)</td>
<td>2.88 (d 9.2)</td>
<td>2.87 (d 9.4)</td>
</tr>
<tr>
<td>6</td>
<td>2.65 (d 9.2)</td>
<td>2.64 (d 9.3)</td>
<td>2.72 (d 8.8)</td>
<td>2.68 (d 9.5)</td>
<td>2.69 (d 9.1)</td>
<td>2.67 (d 10.1)</td>
<td>2.64 (d 9.2)</td>
<td>2.64 (d 9.4)</td>
</tr>
<tr>
<td>7-CO₂Me</td>
<td>3.68 (s)</td>
<td>3.71 (s)</td>
<td>3.70 (s)</td>
<td>3.72 (s)</td>
<td>3.55 (s)</td>
<td>3.59 (s)</td>
<td>3.67 (s)</td>
<td>3.71 (s)</td>
</tr>
<tr>
<td>17</td>
<td>5.02 (br s)</td>
<td>5.01 (br s)</td>
<td>5.03 (br s)</td>
<td>5.02 (br s)</td>
<td>5.01 (br s)</td>
<td>5.02 (br s)</td>
<td>5.02 (br s)</td>
<td>5.02 (br s)</td>
</tr>
<tr>
<td>18</td>
<td>3.56 (d 10.1)</td>
<td>3.67 (d 10.1)</td>
<td>3.92 (d 10.4)</td>
<td>3.56 (d 10.1)</td>
<td>3.58 (d 10.6)</td>
<td>3.52 (d 10.1)</td>
<td>3.54 (d 10.1)</td>
<td>3.48 (d 10.0)</td>
</tr>
<tr>
<td>18-OR</td>
<td>4.92 (m)</td>
<td>4.26 (s, 1H)</td>
<td>4.06 (ABd 7.3)</td>
<td>3.68 (m, 4H)</td>
<td>4.44 (ABd 12.5)</td>
<td>3.80 (s, 3H)</td>
<td>2.82 (m)</td>
<td>2.18 (m)</td>
</tr>
<tr>
<td>5.27 (m)</td>
<td>4.12 (m)</td>
<td>4.07 (ABd 7.3)</td>
<td>3.68 (m, 4H)</td>
<td>4.45 (ABd 12.5)</td>
<td>4.40 (ABd 12.5)</td>
<td>3.58 (m)</td>
<td>3.49 (m)</td>
<td></td>
</tr>
<tr>
<td>5.80 (m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>20b</th>
<th>21b</th>
<th>22b</th>
<th>23b</th>
<th>24b</th>
<th>25b</th>
<th>26b</th>
</tr>
</thead>
<tbody>
<tr>
<td>δH</td>
<td>(J = Hz)</td>
</tr>
<tr>
<td>3</td>
<td>4.17 (m)</td>
<td>4.18 (m)</td>
<td>4.26 (m)</td>
<td>4.17 (m)</td>
<td>4.16 (m)</td>
<td>4.13 (m)</td>
<td>4.06 (m)</td>
</tr>
<tr>
<td>5</td>
<td>3.46 (d 9.5)</td>
<td>3.45 (d 9.8)</td>
<td>3.54 (d 9.2)</td>
<td>3.58 (d 10.1)</td>
<td>3.51 (d 9.7)</td>
<td>3.49 (d 9.5)</td>
<td>3.46 (d 9.7)</td>
</tr>
<tr>
<td>6</td>
<td>2.75 (d 9.5)</td>
<td>2.77 (d 9.8)</td>
<td>2.78 (d 9.2)</td>
<td>2.62 (d 10.1)</td>
<td>2.76 (d 9.7)</td>
<td>2.75 (d 9.5)</td>
<td>2.75 (d 9.2)</td>
</tr>
<tr>
<td>7-CO₂Me</td>
<td>3.69 (s)</td>
<td>3.68 (s)</td>
<td>3.70 (s)</td>
<td>3.74 (s)</td>
<td>3.62 (s)</td>
<td>3.68 (s)</td>
<td>3.68 (s)</td>
</tr>
<tr>
<td>17</td>
<td>5.03 (br s)</td>
<td>5.03 (br s)</td>
<td>5.04 (br s)</td>
<td>5.03 (br s)</td>
<td>5.03 (br s)</td>
<td>5.02 (br s)</td>
<td>5.02 (br s)</td>
</tr>
<tr>
<td>17</td>
<td>5.11 (t 2.4)</td>
<td>5.13 (t 2.4)</td>
<td>5.12 (t 2.4)</td>
<td>5.15 (t 2.4)</td>
<td>5.13 (t 2.4)</td>
<td>5.12 (t 2.4)</td>
<td>5.13 (t 2.4)</td>
</tr>
<tr>
<td>18</td>
<td>3.58 (d 9.8)</td>
<td>3.68. (d 9.8)</td>
<td>3.87 (d 9.9)</td>
<td>3.56 (d 10.1)</td>
<td>3.96 (d 9.8)</td>
<td>3.92 (d 9.8)</td>
<td>3.89 (d 9.7)</td>
</tr>
<tr>
<td>18-OR</td>
<td>3.90 (d 9.8)</td>
<td>3.99 (d 9.8)</td>
<td>4.29 (d 9.9)</td>
<td>3.99 (d 10.1)</td>
<td>3.96 (d 9.8)</td>
<td>3.92 (d 9.8)</td>
<td>3.89 (d 9.7)</td>
</tr>
<tr>
<td>18-OR</td>
<td>4.96 (m)</td>
<td>2.46 (s, 1H)</td>
<td>4.02 (ABd 7.3)</td>
<td>3.68 (m, 4H)</td>
<td>4.46 (s, 2H)</td>
<td>3.80 (s, 3H)</td>
<td>2.84 (m)</td>
</tr>
<tr>
<td>5.22 (m)</td>
<td>4.10 (m)</td>
<td>4.05 (ABd 7.3)</td>
<td>3.68 (m, 4H)</td>
<td>4.37 (ABd 12.5)</td>
<td>3.60 (m)</td>
<td>4.39 (ABd 12.5)</td>
<td>7.2 (m, 5H)</td>
</tr>
</tbody>
</table>