Experimental

General

Flash column chromatography was performed using Merck silica gel (60H; 40-60μ, 230-240 mesh). Light petroleum was redistilled before use and refers to the fraction boiling between 40 and 60 °C. Tetrahydrofuran was dried over sodium-benzophenone and was distilled prior to use. Dichloromethane was dried over CaH₂ and was distilled before use. Ether refers to diethyl ether. Reactions under non-aqueous conditions were carried out under an atmosphere of nitrogen or argon.

Electron impact (EI) or chemical ionisation using ammonia (CI) mass spectra were recorded using a Fisons VG Trio 200 spectrometer and high resolution mass spectra on a Kratos Concept IS spectrometer. Infra-red spectra were measured using a Genesis FTIR spectrometer on NaBr plates, either neat or as evaporated films unless otherwise stated. Nuclear magnetic resonance spectra were recorded in deuterated chloroform unless otherwise indicated on either a Varian Unity 500 (500 MHz), Varian INOVA 300 (300 MHz), or a Varian Gemini 200 (200 MHz) spectrometer. Coupling constants (J) are given in Hertz (Hz) and chemical shifts relative to tetramethylsilane.

2-(tert-Butoxycarbonylaminomethyl)-1,3-dithiane 5

1,3-Propanedithiol (2 cm³, 19.92 mmol) then boron trifluoride diethyl etherate (11 cm³, 89.44 mmol) were added to 2,2-diethoxyethylamine 8 (3 g, 22.52 mmol) in dichloromethane (50 cm³). After 15 h,
aqueous sodium hydroxide (2.5 M, 100 cm³) was added and the mixture stirred vigorously for 1 h. The aqueous layer was extracted with dichloromethane (3 x 50 cm³) and the combined organic extracts washed with brine (100 cm³) and dried (MgSO₄). After concentration under reduced pressure, the residue was dissolved in dichloromethane (50 cm³) then Boc-anhydride (5.4 g, 24.74 mmol) and triethylamine (3.5 cm³, 25.11 mmol) in dichloromethane (10 cm³) were added. After 2 days, water (50 cm³) and aqueous hydrogen chloride (1 M, 25 cm³) were added, the phases were separated and the aqueous phase was extracted with dichloromethane (3 x 50 cm³). The organic extracts were dried (MgSO₄) and concentrated under reduced pressure. Chromatography using light petroleum : ethyl acetate (5 : 1) as eluent gave the carbamate 5 as a white solid (3.54 g, 63%), further purified by recrystallisation from hexane, m.p. 71 °C (lit.⁵ 75-76 °C); δH (300 MHz, CDCl₃) 1.36 [9 H, s, C(CH₃)₃], 1.85 and 1.99 (each 1 H, m, CH), 2.67 (2 H, ddd, J 3, 9, 14), 2.82 (2 H, ddd, J 3, 7, 14), 3.43 (2 H, t, J 6.5, CH₂), 3.92 (1 H, t, J 6.5, CH) and 4.92 (1 H, br. s, NH); m/z (CI) 250 (M⁺+1, 10%), 211 (50), 150 (75) and 119 (100).

2-tert-Butyldimethylsilyloxymethyl-N-methoxy-N-methylbenzamide 6

Trimethylaluminium (2 M in hexane, 32 cm³, 64.5 mmol) was added at 0 °C dropwise over ca. 0.25 h to a suspension of N,O-dimethylhydroxylamine hydrochloride (6.29 g, 64.5 mmol) in dichloromethane (60 cm³). During the addition a vigorous gas evolution ensued. The mixture was stirred for 1 h at 0 °C, phthalide (4.32 g, 32.2 mmol) in dichloromethane (20 cm³) was added and the stirring was continued for 7 h. The mixture was allowed to warm to room temperature before saturated aqueous sodium potassium tartrate (100 cm³) was added. After extraction with dichloromethane (2 x 100 cm³), the organic extracts were washed with brine (100 cm³), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was dissolved in dichloromethane (50 cm³) and tert-butyldimethylsilyl chloride (4.9 g, 32.2 mmol) and imidazole (4.4 g, 64.5 mmol) were added. After stirring for 15 h, water (100 cm³) and dichloromethane (50 cm³) were added. The organic extracts were dried (MgSO₄) then concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (5:1 → 3:1) gave the title compound 6 (5.93 g, 60%) as a clear liquid (Found: M⁺+H, 310.1835. C₁₆H₂₈NO₃Si requires M, 310.1838); v max 3064, 1650, 1463, 1416, 1383, 1257, 1119 and 1081 cm⁻¹; δH (300 MHz, CDCl₃) 0.00 (6 H, s, 2 x SiCH₃), 0.84 [9 H, s, C(CH₃)₃], 3.19 (3 H, s, OCH₃), 3.44 (3 H, br. s, NCH₃), 4.69 (2 H, s, OCH₂), 7.16-7.22 (2 H, m, ArH), 7.31 (1 H, dt, J 2.5, 7.5, ArH) and 7.45 (1 H, d, J 7.5, ArH); δC (75 MHz, CDCl₃) -5.40, 18.39, 25.92, 33.64, 61.00, 62.54, 126.43, 126.86, 129.38, 132.70, 138.80 and 169.71; m/z (CI) 310 (M⁺+1, 100%).
2-(tert-Butoxy carbonylamino)methyl-2-[(2-tert-butyldimethylsilyloxy methy l)phenyl]cyclobutyl-hydroxymethyl-[1,3]-dithiane 10

n-Butyllithium (1.35 M in hexanes, 2.65 cm³, 3.58 mmol) was added to the dithiane 5 (446 mg, 1.79 mmol) in THF (9 cm³) under argon at −40 °C and the solution stirred for 2 h gradually being warmed to −20 °C. *N*,*N*-Dimethylpropyleneurea (DMPU) (0.76 cm³, 6.26 mmol) was added and the mixture stirred for 1 h at −78 °C then transferred via cannula into a solution of the cyclobutyl ketone 7 (247 mg, 0.895 mmol) in THF (4.5 cm³) at −78 °C gradually being warmed to room temperature. After 15 h, saturated aqueous ammonium chloride (25 cm³) was added and the mixture was extracted with ethyl acetate (3 x 25 cm³). The organic extracts were dried (MgSO₄) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate as eluent (9 : 1) gave recovered ketone 7 (127 mg, 51%) and the *title compound* 10 (209 mg, 42%) as a clear viscous oil (Found: *M*⁺, 553.2716. C₂₈H₄₇NO₄S₂Si requires *M*⁺, 553.2716); *ν*max 3435, 3361, 3060, 1712, 1495, 1365, 1255, 1171, 1029 and 839 cm⁻¹; δ_H (300 MHz, CDCl₃) 0.04 and 0.21 (each 3 H, s, SiCH₃), 0.87 [9 H, s, C(CH₃)₃], 1.32-1.41 (2 H, m), 1.38 [9 H, s, C(CH₃)₃], 1.46-1.58 (2 H, m), 1.71 (1 H, sex, J 9, CH), 1.79 and 1.95 (each 1 H, m), 2.15 (1 H, dt, J 4.5, 14.5, CH), 2.37-2.52 (2 H, m), 2.79 (1 H, ddd, J 3.5, 10.5, 14, SCH), 2.92 (1 H, ddd, J 3, 11, 14, SCH), 3.52 (1 H, dd, J 3, 14, CHN), 3.53 (1 H, pent, J 9), 3.76 (1 H, dd, J 8, 14.5, CHN), 4.41 and 5.44 (each 1 H, d, J 10.5, CHO), 5.91 (1 H, m, NH), 6.08 (1 H, s, OH), 7.06 (1 H, dd, J 2, 7.5, ArH), 7.11-7.20 (2 H, m, ArH) and 7.58 (1 H, dd, J 1.5, 7.5, ArH); δ_C (75 MHz, CDCl₃) -5.42, -4.97, 17.54, 24.03, 24.61, 24.73, 25.66, 25.76, 26.72, 28.38, 42.83, 44.77, 68.66, 78.64, 85.98, 126.94, 127.37, 130.61, 131.70, 138.51, 140.42 and 156.60; m/z (EI) 553 (M⁺, 2%), 422 (5), 305 (20), 173 (100) and 119 (50).

2-(tert-Butoxy carbonylamino)methyl-2-(2-hydroxymethyl phenyl)cyclobutyl hydroxymethyl-[1,3]-dithiane 11

Tetra-*n*-butylammonium fluoride in THF (1 M, 0.23 cm³, 0.230 mmol) was added to the silyl ether 10 (125 mg, 0.227 mmol) in THF (2 cm³) at 0 °C. After 15 min, ether (15 cm³) and water (15 cm³) were added and the aqueous layer extracted with ether (15 cm³). The organic extracts were washed with brine (15 cm³), dried (MgSO₄) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (3:1 → 1:1) as eluent gave the *title compound* 11 (71 mg, 71%) as a clear viscous oil (Found: *M*⁺+H, 440.1919. C₂₂H₃₄NO₄S₂ requires *M*⁺, 440.1929); δ_H (300 MHz, CDCl₃) 1.31 (1 H, m), 1.35 [9 H, s, C(CH₃)₃], 1.41-1.74 (4 H, m), 1.78-1.85 (2 H, m), 2.28 (1 H, dt, J 4.5, 14.5), 2.40 (1 H, m), 2.49 (1 H, dt, J 4, 14.5), 2.71 (1 H, ddd, J 3.5, 10, 14), 2.84 (1 H, ddd, J 3.5,
11, 14.5), 3.52 (1 H, pent, J 8), 3.55-3.71 (2 H, m, CH₂N), 4.49 (1 H, dd, J 6.5, 11.5, OCH), 5.26 (1 H, dd, J 5.5, 11.5, OCH), 5.39 (1 H, br. s, NH), 5.51 (1 H, s, OH), 7.09-7.22 (3 H, m, ArH) and 7.55 (1 H, dd, J 1.5, 7.5, ArH); m/z (CI) 440 (M⁺+1, 30%), 340 (25) and 173 (100).

2-(tert-Butoxycarbonylamino)methyl-2-[2-(tert-butyldimethylsilyloxyethyl)benzoyl]-[1,3]-dithiane 12

Following the procedure described above for the preparation of the dithiane 10, the amide 6 (451 mg, 1.46 mmol) in THF (6 cm³) and dithiane 5 (727 mg, 2.92 mmol) in THF (6 cm³), deprotonated using n-butyllithium (1.6 M in hexanes, 3.65 cm³, 5.84 mmol), gave the title compound 12 (501 mg, 69%), as a colourless oil, after chromatography using light petroleum : ethyl acetate (5 : 1) as eluent (Found: M⁺+H, 498.2160. C₂₄H₄₀NO₄S₂Si requires M, 498.2168); δH (300 MHz, CDCl₃) 0.06 (6 H, s, 2 x SiCH₃), 0.84 [9 H, s, C(CH₃)₃], 1.34 [9 H, s, C(CH₃)₃], 1.84-1.97 (2 H, m), 2.78-2.94 (4 H, m), 3.69 (2 H, d, J 6.5, NCH₂), 4.66 (2 H, s, OCH₂), 5.08 (1 H, m, NH), 7.16 (1 H, t, J 7.5, ArH), 7.35 (1 H, t, J 7.5, ArH), 7.52 (1 H, d, J 7.5, ArH) and 8.01 (1 H, d, J 7.5, ArH); δC (75 MHz, CDCl₃) –5.32, 18.40, 23.75, 25.98, 26.76, 28.25, 45.72, 59.95, 62.82, 79.48, 125.91, 127.06, 128.03, 130.62, 135.25, 140.24, 156.15 and 200.4; m/z (CI) 498 (M⁺+1, 10%), 442 (20), 369 (40), 145 (80), 133 (80), 106 (95) and 91 (100).

2-(tert-Butyldimethylsilyloxyethyl)benzyl chloride 14

2-tert-Butyldimethylsilyloxyethylbenzyl alcohol 13° (19.5 g, 0.077 mol) in dichloromethane (50 cm³) and pyridine (9.5 cm, 0.118 mol) in dichloromethane (50 cm³) were added simultaneously to thionyl chloride (8.5 cm³, 0.117 mol) in dichloromethane (250 cm³) at 0 °C. After 0.5 h, water (150 cm³) and aqueous hydrogen chloride (1 M, 35 cm³) were added. The aqueous layer was extracted with dichloromethane (100 cm³) and the organic extracts washed with brine (100 cm³) and dried (MgSO₄). After concentration under reduced pressure, chromatography using light petroleum : ethyl acetate (19:1) gave the title compound 14 (9.7 g, 53%) as a yellow oil (Found: M⁺+H, 271.1298. C₁₄H₂₄OClSi requires M, 271.1285); δH (300 MHz, CDCl₃) 0.00 (6 H, s, 2 x SiCH₃), 0.85 [9 H, s, C(CH₃)₃], 4.62 and 4.80 (each 2 H, s, CH₂), 7.16-7.24 (3 H, m, ArH) and 7.29 (1 H, d, J 7.5, ArH); δC (125 MHz, CDCl₃) –5.31, 18.33, 25.91, 43.65, 62.63, 127.52, 127.64, 128.79, 129.92, 134.59 and 139.74; m/z (CI) 288, 290 (M⁺+18, 60 and 20%) and 271, 273 (M⁺+1, 100, 33).
2-(tert-Butoxycarbonylamino)methyl-2-(2-tert-butyldimethylsilyloxyphenyl)methyl-[1,3]-dithiane 15

Following the procedure described above for the preparation of the dithiane 10 with deprotonation of the dithiane 5 (975 mg, 3.92 mmol) in THF (50 cm^3) using n-butyllithium (1.6 M in hexanes, 4.9 cm^3, 7.84 mmol) and DMPU (1.5 cm^3, 12.41 mmol), the chloride 14 (677 mg, 2.84 mmol) in THF (5 cm^3) gave, after 30 min at −78 °C and chromatography using light petroleum : ethyl acetate (5:1), the title compound 15 (919 mg, 67%) as a colourless oil (Found: M++H, 484.2353. C 24H42O3SiS2 requires M, 484.2375); \(\nu_{\text{max}} \) 11, 0, 11, 11, 11, 11, 11, 11, 11; \(\delta_{\text{H}} \) (300 MHz, CDCl\(_3\)) 0.02 (6 H, s, 2 x SiCH\(_3\)), 0.82 [9 H, s, C(CH\(_3\))\(_3\)], 1.36 [9 H, s, C(CH\(_3\))\(_3\)], 1.65 and 1.88 (each 1 H, m, 5-H), 2.46 (2 H, dt, \(J \) 3.5, 14.5, 2 x SCH), 2.89 (2 H, dd, \(J \) 12, 14.5, 2 x SCH), 2.98 (2 H, s, ArCH\(_2\)), 3.56 (2 H, d, \(J \) 6, CH\(_2\)N), 4.79 (2 H, s, OCH\(_2\)), 3.56 (2 H, d, J 7, ArH); \(m/z \) (CI) 484 (M\(^++\)1, 10%), 352 (60), 296 (85), 252 (100) and 146 (95).

2-(tert-Butoxycarbonylamino)methyl-2-(2-hydroxymethylphenyl)methyl-[1,3]-dithiane 16

Following the procedure outlined for the synthesis of the alcohol 11, the silyl ether 15 (1.1 g, 2.28 mmol) in THF (40 cm^3) with tetra-n-butyrammonium fluoride (1 M in THF, 2.25 cm^3, 2.25 mmol), after chromatography using light petroleum : ethyl acetate (1:1), gave the title compound 16 (746 mg, 89%) as a viscous oil (Found: C, 58.95; H, 7.55; N, 3.85; S, 17.4%; M\(^+\), 369.1433. C\(_{18}\)H\(_{27}\)NO\(_3\)S\(_2\) requires C, 58.5; H, 7.3; N, 3.8; S, 17.3%; M, 369.1432); \(\nu_{\text{max}} \) 11, 11, 11, 11, 11, 11, 11, 11, 11; \(\delta_{\text{H}} \) (300 MHz, CDCl\(_3\)) 1.45 [9 H, s, C(CH\(_3\))\(_3\)], 1.82 and 2.05 (each 1 H, m, 5-H), 2.38 (1 H, br s, OH), 2.62 (2 H, dt, \(J \) 4, 14.5, 2 x SCH), 3.03 (2 H, dd, \(J \) 13, 14.5, 2 x SCH), 3.18 (2 H, s, ArCH\(_2\)), 3.70 (2 H, d, \(J \) 6, NH), 2.89 (2 H, s, OCH\(_2\)), 5.20 (1 H, m, NH), 7.26-7.35 (2 H, m, ArH) and 7.42-7.50 (2 H, m, ArH); \(\delta_{\text{C}} \) (75 MHz, CDCl\(_3\)) 24.26, 26.35, 28.32, 39.84, 44.79, 53.80, 63.11, 79.80, 127.36, 127.62, 129.30, 132.04, 132.94, 140.20 and 164.55; \(m/z \) (EI) 369 (M\(^+\), 60%), 308 (50), 296 (85), 252 (100) and 124 (100).

2-(tert-Butoxycarbonylamino)methyl-2-(2-formylphenyl)methyl-[1,3]-dithiane 17

Pre-activated manganese dioxide (5.9 g, 67.82 mmol) was added to the alcohol 16 (5 g, 12.55 mmol) in dichloromethane (125 cm^3) and the mixture stirred for 24 h at room temperature then filtered through Celite®. The solid residue was washed with dichloromethane (2 x 50 cm^3) and, after concentration of the extracts under reduced pressure, chromatography of the residue using light petroleum : ethyl acetate (3:1) gave the title compound 17 (3.5 g, 70%) as a viscous oil (Found: M\(^+\), 367.1282. C\(_{18}\)H\(_{25}\)NO\(_3\)S\(_2\) requires M, 367.1276); \(\nu_{\text{max}} \) 3420, 3067, 1700, 1506, 1426, 1368, 1254 and 1166; \(\delta_{\text{H}} \) (CDCl\(_3\), 300
MHz) 1.41 [9 H, s, C(CH$_3$)], 1.65 and 1.95 (each 1 H, m, 5-H), 2.48 (2 H, dt, J 4, 14.5, 2 x SCH), 2.90 (2 H, dd, J 12, 14.5, 2 x SCH), 3.45 (2 H, s, ArCH$_2$), 3.51 (2 H, d, J 6, NCH$_2$), 5.18 (1 H, m, NH), 7.32-7.51 (3 H, m, ArH), 7.81 (1 H, d, J 7.5, ArH) and 10.22 (1 H, s, CHO); δ_C (75 MHz, CDCl$_3$) 24.04, 26.20, 28.30, 38.75, 45.12, 53.73, 79.60, 127.80, 131.28, 132.88, 133.77, 135.40, 136.72, 156.20 and 192.25; m/z (CI) 385 (M$^+$+18, 15%), 368 (M$^+$+1, 20), 350 (75), 329 (79), 312 (70), 268 (55), 250 (100) and 237 (52). Starting alcohol 16 (524 mg, 11%) was then eluted off the column.

4,4-Propylenedithio-2,3,4,5-tetrahydro-[1H]-2-benzazepine 19

Aqueous hydrogen chloride (4.5 M, 14 cm3, ca. 65 mmol) in ethyl acetate (10 cm3) was added to the aldehyde 17 (2.4 g, 6.54 mmol) in ethyl acetate (150 cm3). After 5 h, ether (150 cm3) and water (100 cm3) were added, and the mixture basified using aqueous sodium hydroxide (1 M) to ca. pH 11. Following extraction with ether (3 x 150 cm3), the organic extracts were dried (MgSO$_4$) and concentrated under reduced pressure to give the imine 18; δ_H (300 MHz, CDCl$_3$) 1.85-2.12 (2 H, m, CH$_2$), 2.79 (2 H, m, 2 x SCH), 2.92-3.05 (2 H, m, 2 x SCH), 2.97 (2 H, s, 5-H$_2$), 3.80 (2 H, br. s, 3-H$_2$), 7.19-7.38 (4 H, m, ArH) and 8.68 (1 H, br. s, 1-H). Sodium cyanoborohydride (1.23 g, 19.6 mmol) and concentrated aqueous hydrogen chloride (ca. 0.5 cm3) were added to the imine 18 (ca. 6.54 mmol) in methanol (100 cm3) and the mixture stirred for 2 h. Ether (100 cm3), water (100 cm3) and aqueous sodium hydroxide (1 M) were added until the pH was ca. 10. The aqueous layer was extracted with ether (3 x 100 cm3) and the ethereal extracts were dried (MgSO$_4$) then concentrated under reduced pressure. Chromatography of the residue using ether containing triethylamine (1%) gave the title compound 19 (1.2 g, 73%) as a viscous yellow oil (Found: M$, 251.0798$. C$_{13}$H$_{17}$NS$_2$ requires M$, 251.0802$); ν_{max} 3395, 3065, 1462, 1382 and 1095; δ_H (300 MHz, CDCl$_3$) 1.89 and 2.10 (each 1 H, m, 5'-H), 2.40 (1 H, s, NH), 2.60-2.72 and 2.80-2.95 (each 2 H, m, 2 x SCH), 3.36, 3.55 and 3.99 (each 2 H, s, CH$_2$), 7.11 (1 H, m, ArH) and 7.18-7.25 (3 H, m, ArH); δ_C (75 MHz, CDCl$_3$) 25.27, 26.08, 47.62, 50.66, 53.39, 54.45, 59.98, 126.99, 127.28, 127.69, 130.98, 135.31 and 142.24; m/z (EI) 251 (M$, 60\%$) and 145 (100).

2-tert-Butoxycarbonyl-4,4-propylenedithio-2,3,4,5-tetrahydro-[1H]-2-benzazepine 20

Boc-anhydride (1.00 g, 4.58 mmol) was added to the tetrahydrobenzazepine 19 (1.03 g, 4.10 mmol) and triethylamine (0.9 cm3, 6.46 mmol) in dichloromethane (25 cm3) and the mixture stirred at room temperature for 18 h before ether (100 cm3) and water (100 cm3) were added. The aqueous layer was extracted with ether (3 x 100 cm3) and the organic extracts were dried (MgSO$_4$) then concentrated under
reduced pressure. Chromatography using light petroleum : ethyl acetate (5:1) as eluent gave the title compound 20 (1.45 g, 100%) as a colourless solid recrystallised from ethyl acetate, m.p. 96-98 °C (Found: C, 61.65; H, 7.95; N, 4.0; S, 18.1%; M+, 351.1330. C_{18}H_{25}NO_{2}S_{2} requires C, 61.5; H, 7.1; N, 4.0; S, 18.2%; M, 351.1327); \(\nu_{\text{max}}\) 3065, 1693, 1456, 1410, 1367, 1246, 1167 and 1140; \(\delta_{\text{H}}\) (300 MHz, CDCl₃; spectrum poorly resolved due to rotamers) 1.50 [9 H, br. s, C(CH₃)₃], 1.84 and 2.10 (each 1 H, m, 5'-H), 2.49-2.75 (2 H, m, 2 x SCH), 2.91-3.32 (4 H, m), 3.86-4.52 (4 H, m) and 7.14-7.35 (4 H, m, ArH); \(m/z\) (EI) 351 (M+, 10%), 295 (20), 250 (30) and 146 (100).

2-(4-Methylphenylsulfonyl)-4,4-propylenedithio-2,3,4,5-tetrahydro-[1\text{H}]-2-benzazepine 21
Toluene p-sulfonyl chloride (835 mg, 4.38 mmol) was added to the tetrahydrobenzazepine 19 (1.00 g, 3.98 mmol) in pyridine (35 cm³) and the mixture stirred for 24 h before being concentrated under reduced pressure. Ether (100 cm³) and aqueous hydrogen chloride (3.45 M, 100 cm³) were added and the aqueous layer extracted with ether (3 x 100 cm³). The organic extracts were dried (MgSO₄) and concentrated under reduced pressure. Recrystallisation of the residue from methanol gave the title compound 21 (1.09 g, 68%) as a colourless solid, m.p. 146-147 °C (Found: C, 59.15; H, 6.1; N, 3.45; S, 23.9%; M+, 405.0894. C_{20}H_{23}NO_{2}S_{3} requires C, 59.3; H, 5.7; N, 3.5; S, 23.7%; M, 405.0891); \(\nu_{\text{max}}\) 3062, 1693, 1450, 1342, 1163 and 1092; \(\delta_{\text{H}}\) (300 MHz, CDCl₃) 1.79 and 2.06 (each 1 H, m, 5'-H), 2.35 (3 H, s, CH₃), 2.57 (2 H, dt, J 14.5, 4, 2 x SCH), 2.99 (2 H, ddd, J 2.5, 12, 14.5, 2 x SCH), 3.14 (2 H, s, 5-H₂), 3.86 (2 H, br. s, 3-H₂), 4.21 (2 H, s, 1-H₂), 6.96 (1 H, d, J 6.5, ArH), 7.08-7.14 (3 H, m, ArH), 7.22 (2 H, d, J 8, ArH) and 7.69 (2 H, d, J 8, ArH); \(\delta_{\text{C}}\) (75 MHz, CDCl₃) 21.46, 24.93, 26.47, 46.78, 49.52, 53.02, 57.80, 127.29, 127.61, 127.93, 128.46, 129.61, 131.05, 135.20, 136.40, 136.80 and 143.80; \(m/z\) (CI) 423 (M'+18, 80%) and 406 (M'+1, 100).

2-Phenylmethyl-4,4-propylenedithio-2,3,4,5-tetrahydro-[1\text{H}]-2-benzazepine 22
Sodium triacetoxyborohydride (157 mg, 0.741 mmol) was added to the tetrahydrobenzazepine 19 (62 mg, 0.247 mmol) and benzaldehyde (28 \(\mu\)L, 0.276 mmol) in tetrahydrofuran (5 cm³) at room temperature and the mixture stirred for 24 h before ether (25 cm³) was added. After washing with sodium hydroxide (1 M, 25 cm³), the aqueous layer was re-extracted with ether (3 x 25 cm³) and the extracts were dried (MgSO₄) then concentrated under reduced pressure. Preparative TLC of the residue using light petroleum : ethyl acetate (1:1) gave the title compound 22 (55 mg, 66%) as a yellow oil (Found: M', 341.1275. C_{20}H_{23}NS₂ requires M, 341.1272); \(\nu_{\text{max}}\) 3065, 3028, 1494, 1454, 1426, 1261, 1149 and 1101; \(\delta_{\text{H}}\) (300 MHz, CDCl₃) 1.87 (2 H, pent, J 6, 5'-H₂), 2.55-2.75 (4 H, m, 2 x SCH₂), 3.35,
3.44, 3.74 and 3.81 (each 2 H, s, CH2), 6.90 (1 H, m, ArH) and 7.08-7.31 (8 H, m, ArH); \(\delta_c \) (125 MHz, CDCl\textsubscript{3}) 25.41, 26.41, 46.24, 51.64, 58.17, 60.16, 66.83, 126.91, 127.02, 127.08, 128.23, 128.78, 129.19, 130.36, 136.68, 139.49 and 139.66; m/z (EI) 341 (M+, 15%), 250 (50) and 91 (100).

2-tert-Butoxycarbonyl-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one 23

Boron trifluoride diethyletherate (5.3 cm3, 41.82 mmol), red mercuric oxide (4.37 g, 20.18 mmol) and water (8.5 cm3) were added to the dithiane 20 (2.98 g, 8.49 mmol) in THF (85 cm3) at room temperature. The mixture was stirred for 2 h then ether (250 cm3) and saturated aqueous sodium bicarbonate (250 cm3) were added. The aqueous layer was extracted with ether (4 x 150 cm3) and organic extracts were washed with brine (250 cm3) and dried (MgSO\textsubscript{4}) then concentrated under reduced pressure. Recrystallisation using ether gave the title compound 23 (1.90 g, 86%) as a colourless crystalline solid, m.p. 82-83 °C (Found: C, 69.25; H, 7.25; N, 5.35%. C\textsubscript{15}H\textsubscript{19}NO\textsubscript{3} requires C, 69.0; H, 7.3; N, 5.4%. Found: M++NH\textsubscript{4}, 279.1713. C\textsubscript{15}H\textsubscript{23}N\textsubscript{2}O\textsubscript{3} requires M, 279.1708); \(\nu_{\text{max}} \) (CHCl\textsubscript{3}) 3010, 1725, 1694, 1421, 1396, 1265, 1160, 910 and 733 cm-1; \(\delta \) (75 MHz, CDCl\textsubscript{3}) 28.15, 28.22, 29.59, 30.20, 48.36, 48.47, 51.08, 51.76, 55.66, 56.24, 81.00, 81.19, 127.38, 127.53, 127.59, 127.70, 128.00, 129.69, 139.96, 131.18, 134.75, 135.13, 154.65, 155.32, 206.45 and 206.93; m/z (CI) 279 (M++18, 65%), 262 (M++1, 30) and 223 (100). Chromatography of the concentrated mother liquor after the recrystallisation of 23 using light petroleum : ethyl acetate (5:1) as eluent gave more tetrahydrobenzazepin-4-one 23 (90 mg, 4%).

2-(4-Methylphenyl)sulfonyl-2,3,4,5-tetrahydro-[1H]-2-benzazepine-4-one 24

Following the procedure outlined for the synthesis of 23, dithiane 21 (783 mg, 1.93 mmol) was treated with boron trifluoride diethyl etherate (1.2 cm3, 9.47 mmol) and red mercuric oxide (994 mg, 4.59 mmol) in aqueous THF (20 cm3; THF : water, 10:1) to give the title compound 24 (438 mg, 72%) as a colourless solid after recrystallisation from ethyl acetate and petroleum ether (40:60), m.p. 138-140 °C (Found: C, 64.45; H, 5.15; N, 4.50; S, 10.35%; M+, 315.0932. C\textsubscript{17}H\textsubscript{17}NO\textsubscript{3}S requires C, 64.8; H, 5.4; N, 4.4; S, 10.2%; M, 315.0929); \(\nu_{\text{max}} \) (CHCl\textsubscript{3}) 3055, 1728, 1349, 1265 and 1164 cm-1; \(\delta_{\text{H}} \) (300 MHz, CDCl\textsubscript{3}) 2.38 (3 H, s, CH\textsubscript{3}), 3.88, 3.91 and 4.61 (each 2 H, s, CH\textsubscript{2}), 6.96-7.09 and 7.14-7.19 (each 2 H, m, ArH) and 7.23 and 7.62 (each 2 H, d, J 8, ArH); \(\delta_c \) (75 MHz, CDCl\textsubscript{3}) 21.62, 48.36, 52.71, 57.06,
126.98, 127.63, 127.93, 128.09, 129.92, 130.17, 131.07, 132.94, 135.11, 143.99 and 204.24; m/z (CI) 333 (M++18, 15%), 316 (M++1, 5) and 162 (100).

2-Phenylmethyl-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one 25
Following the procedure outlined for the synthesis of ketone 23, the dithiane 22 (62 mg, 0.182 mmol) was treated with boron trifluoride diethyletherate (0.11 cm3, 0.868 mmol) and red mercuric oxide (93 mg, 0.429 mmol) in THF (2 cm3) and water (0.2 cm3) to give after 5 h and preparative TLC using light petroleum : ethyl acetate (1:1) containing triethylamine (1%) as eluent, the title compound 25 (38 mg, 84%) as a viscous yellow oil (Found: M$^+$+H, 252.1388. C$_{17}$H$_{18}$NO requires M, 252.1388); $\nu$$_{\text{max}}$ (CDCl$_3$) 3054, 1719, 1422, 1265, 909 and 745 cm$^{-1}$; $\delta$$_H$ (300 MHz, CDCl$_3$) 3.32, 3.59, 4.01 and 4.03 (each 2 H, s, CH$_2$), 6.93 (1 H, m, ArH), 7.03-7.14 (3 H, m, ArH) and 7.17-7.29 (5 H, m, ArH); $\delta$$_C$ (75 MHz, CDCl$_3$) 49.58, 60.05, 60.56, 65.43, 126.94, 127.35, 127.37, 128.40, 128.76, 128.80, 130.39, 131.09, 136.14, 137.95 and 206.85; m/z (CI) 252 (M$^+$+1, 100%).

2-tert-Butoxycarbonyl-4-triethylsilyloxy-2,3-dihydro-[1H]-2-benzazepine 26
The ketone 23 (654 mg, 2.51 mmol), triethylamine (0.73 cm3, 5.24 mmol) and triethylsilyl trifluoromethanesulfonate (0.68 cm3, 3.01 mmol) were stirred at room temperature in dichloromethane (25 cm3) for 15 h. Ether (50 cm3) and saturated aqueous sodium bicarbonate (50 cm3) were added and the aqueous layer extracted with ether (3 x 50 cm3). The organic extracts were dried (MgSO$_4$) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (9 : 1) containing triethylamine (0.5%) as eluent gave the enol ether 26 (612 mg, 65%) as a clear oil; $\delta$$_H$ (300 MHz, CDCl$_3$; a mixture of rotamers, ratio 60 : 40) 0.55 (2.4 H, q, J 8, 3 x SiCH$_2$), 0.81 (3.6 H, q, J 8, 3 x SiCH$_2$), 0.97 (3.6 H, t, J 8, 3 x CH$_3$), 1.06 (5.4 H, t, J 8, 3 x CH$_3$), 1.36 [5.4 H, s, C(CH$_3$)$_3$], 1.43 [3.6 H, s, C(CH$_3$)$_3$], 4.29 (2 H, s, CH$_2$), 4.34 (1.2 H, s, CH$_2$), 4.36 (0.8 H, s, CH$_2$), 5.95 (0.6 H, s, 5-H), 5.98 (0.4 H, s, 5-H) and 7.05-7.28 (4 H, m, ArH); m/z (CI) 393 (M$^+$+18, 25%), 376 (M$^+$+1, 30), 337 (40), 320 (50) and 132 (100).

2-(4-Methylphenylsulfonyl)-4-triethylsilyloxy-2,3-dihydro-[1H]-2-benzazepine 27
The ketone 24 (34 mg, 0.108 mmol), triethylamine (17 µl, 0.122 mmol) and triethylsilyl trifluoromethanesulfonate (27 µL, 0.119 mmol) were heated in dichloromethane (2 cm3) under reflux for 15 min. Ether (10 cm3) and saturated aqueous sodium bicarbonate (10 cm3) were added and the aqueous layer extracted with ether (3 x 10 cm3). The combined extracts were dried (Na$_2$SO$_4$) then
concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (9:1) containing triethylamine (1%) gave the enol ether 27 (31 mg, 67%) as a colourless oil (Found: M⁺, 429.1794. C₂₃H₃₁NO₃SSi requires M, 429.1793); δ_H (300 MHz, CDCl₃) 0.58 (6 H, q, J 8, 3 x SiCH₂), 0.99 (9 H, t, J 8, 3 x CH₃), 2.34 (3 H, s, ArCH₃), 4.23 and 4.48 (each 2 H, s, CH₂), 5.65 (1 H, s, 5-H), 6.76 (1 H, dd, J 1.5, 7, ArH), 7.01 (2 H, d, J 8, ArH), 7.07-7.17 (2 H, m, ArH), 7.21 (1 H, dd, J 2, 7, ArH) and 7.30 (2 H, d, J 8, ArH); m/z (EI) 429 (M⁺, 25%) and 273 (100).

N-(2-Ethenylphenylmethyl)prop-2-enylamine 30

Prop-2-enylamine (0.32 cm³, 4.34 mmol) and magnesium sulfate (2 g) were added to 2-ethenylbenzaldehyde 29 (520 mg, 3.94 mmol) in dichloromethane (25 cm³) and the solution stirred at room temperature for 18 h, then filtered and the solvent removed under reduced pressure. The residue was taken up in methanol (20 cm³) and sodium borohydride (150 mg, 3.97 mmol) was added. The mixture was stirred for 1 h before the volume was reduced to approximately half under reduced pressure and ether (50 cm³) and aqueous sodium hydroxide (1 M, 50 cm³) were added. The aqueous layer was extracted with ether (3 x 50 cm³) and the organic extracts were dried (MgSO₄). Concentration under reduced pressure gave the amine 30 (410 mg, 61%) as an oil which was used without purification; ν_max 3325, 3069, 3016, 1639, 1627, 1482, 1450 and 1414 cm⁻¹; δ_H (300 MHz, CDCl₃) 3.35 (2 H, dd, J 1, 6.5, 1-H₂), 3.91 (2 H, s, ArCH₂), 5.16-5.28 (2 H, m, 3-H₂), 5.39 (1 H, d, J 11, 2''-H), 5.78 (1 H, d, J 17, 2''-H'), 5.99 (1 H, m, 2-H), 7.10 (1 H, dd, J 11, 17, 1''-H), 7.22-7.40 (3 H, m, ArH) and 7.53-7.61 (1 H, m, ArH); m/z (CI) 174 (M⁺+1, 100%).

N-(2-Ethenylphenyl)methyl-N-prop-2-enyl 2-nitrobenzene sulfonamide 32

2-Nitrophenylsulfonyl chloride (0.71 g, 3.20 mmol) was added to the amine 30 (0.53 g, 3.06 mmol), triethylamine (0.64 cm³, 4.59 mmol) and 4-dimethylaminopyridine (ca. 4 mg) in dichloromethane (35 cm³) and the solution stirred at room temperature for 1.5 h. Silica (ca. 3 g) was added and the mixture concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (3:1) as eluent gave the title compound 32 (924 mg, 85%) as a colourless viscous oil (Found: M⁺+NH₄, 376.1337. C₁₈H₂₂N₃O₄S requires M, 376.1331); ν_max 3089, 3024, 1543, 1372, 1353, 1153, 1163, 1126, 1065, 916, 852 and 774; δ_H (300 MHz, CDCl₃) 3.92 (2 H, d, J 6, NCH₂), 4.65 (2 H, s, ArCH₂), 5.03-5.16 (2 H, m, 3-H₂), 5.31 (1 H, d, J 11, 2''-H), 5.60 (1 H, d, J 17, 2''-H'), 5.62 (1 H, m, 2-H), 6.98 (1 H, dd, J 11, 17, 1''-H), 7.21-7.34 (3 H, m, ArH), 7.47 (1 H, d, J 7.5, ArH), 7.61-7.76 (3 H, m, ArH) and 7.98 (1 H, d, J 7.5, ArH); δ_C (75 MHz, CDCl₃) 48.13, 49.56, 116.89, 119.35, 124.09, 126.26, 127.80,
128.06, 129.03, 131.00, 131.58, 133.36, 133.57, 133.83, 137.48 and 147.78; m/z (Cl) 376 (M⁺+18, 60%), 359 (M⁺+1, 30), 172 (80) and 117 (100).

2,3-Dihydro-[1H]-2-benzazepine 35

Potassium carbonate (233 mg, 1.69 mmol), thiophenol (60 μL, 0.584 mmol) and 18-crown-6 (trace) added to the N-(2-nitrophenylsulfonyl)dihydrobenzazepine 34 (171 mg, 0.518 mmol, 1 eq.) in N,N-dimethylformamide (6 cm³) and the mixture stirred for 4 h. Ethyl acetate (25 cm³) and water (25 cm³) were added and the aqueous layer was extracted with ethyl acetate (4 x 25 cm³). The organic extracts were dried (MgSO₄) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (5:1) containing triethylamine (1%) gave the title compound 35 (63 mg, 84%) as a clear oil (Found: M⁺, 145.0889. C₁₀H₁₁N requires M⁺, 145.0891); δH (300 MHz, CDCl₃) 1.90 (1 H, br. s, NH), 3.78 (2 H, m, 3-H₂), 4.01 (2 H, s, 1-H₂), 5.94 (1 H, dt, J 12.5, 3.5, 4-H), 6.48 (1 H, dt, J 12.5, 2.5, 5-H) and 7.02-7.33 (4 H, m, ArH); δC (75 MHz, CDCl₃) 52.99, 54.60, 126.64, 126.95, 127.58, 129.17, 131.06, 134.65, 135.72 and 141.90; m/z (CI) 163 (M⁺+18, 5%) and 146 (M⁺, 100).

(4SR,5RS)-4,5-Dihydroxy-2-(4-methylphenyl)sulfonyl-2,3-dihydro-[1H]-2-benzazepine 36

N-Methylmorpholine-N-oxide (41 mg, 0.350 mmol) and osmium tetraoxide (2 mg, 7.9 x 10⁻³ mmol, 2.5 mol%) were added to the dihydrobenzazepine 33 (95 mg, 0.318 mmol) in acetone (2 cm³) and water (2 cm³). The reaction mixture was stirred for 24 h at room temperature before dichloromethane (25 cm³) and water (25 cm³) were added. The aqueous layer was extracted with dichloromethane (2 x 25 cm³) and the organic extracts dried (MgSO₄). After concentration under reduced pressure, chromatography using light petroleum : ethyl acetate (5:1) containing triethylamine (1%) gave the title compound 36 (61 mg, 58%) as a colourless solid (Found: M⁺, 333.1027. C₁₇H₁₉NO₄S requires M⁺, 333.1035); δH (300 MHz, CDCl₃) 2.36 (3 H, s, CH₃), 3.53 (1 H, dd, J 8, 13.5, 3-H), 3.61 (1 H, dd, J 3.5, 13.5, 3-H'), 3.82 (1 H, m, 4-H), 4.31 and 4.53 (each 1 H, d, J 15, 1-H), 4.80 (1 H, m, 5-H), 7.11-7.34 (6 H, m, ArH) and 7.53 (2 H, d, J 8, ArH); m/z (Cl) 351 (M⁺+18, 5%), 333 (M⁺, 10), 316 (10), 178 (40) and 160 (100).

(4RS,5SR)-4,5-Dihydroxy-2-(2-nitrophenyl)sulfonyl-2,3,4,5-tetrahydro-[1H]-2-benzazepine 37

Following the procedure described for the synthesis of diol 36, the dihydrobenzazepine 34 (7.16 g, 21.7 mmol), N-methylmorpholine-N-oxide (3.00 g, 25.6 mmol) and osmium tetraoxide (110 mg, 0.43 mmol, 2 mol%) gave, after washing with saturated aqueous sodium sulfite (50 cm³) and chromatography using light petroleum : ethyl acetate (1:1 → 1:2), the title compound 37 (6.50 g, 82%) as a light brown syrup.
which solidified gradually (Found: M\(^+\)+NH\(_4\), 382.1072. C\(_{16}H_{20}N_3O_6S\) requires \(M\), 382.1072); \(\nu_{\max}\) (CH\(_2\)Cl\(_2\)) 3496, 3055, 1546, 1265 and 1165 cm\(^{-1}\); \(\delta\)\(_H\) (300 MHz, CDCl\(_3\)) 2.41 (1 H, d, J 7.5, OH), 2.60 (1 H, m, OH), 3.71-3.82 (2 H, m, 3-H\(_2\)), 4.13 (1 H, m, 4-H), 4.52 and 4.75 (each 1 H, d, J 15.5, 1-H), 5.05 (1 H, m, 5-H), 7.28-7.45 (4 H, m, ArH), 7.62-7.77 (3 H, m, ArH) and 7.98 (1 H, d, J 8, ArH); \(m/z\) (CI) 382 (M\(^+\)+18, 20%) and 180 (100).

2-Butyl-4,5-dihydroxy-2,3,4,5-tetrahydro-[1\(H\)]-2-benzazepine 39

Following the procedure outlined for the preparation of the tetrahydrobenzazepine 35, the 2-(2-nitrophenyl)sulfonyltetrahydrobenzazepine 37 (819 mg, 2.25 mmol) potassium carbonate (1.01 g, 7.31 mmol) and thiophenol (0.26 cm\(^3\), 2.53 mmol) in acetonitrile (30 cm\(^3\)) after stirring for 15 h gave the dihydroxytetrahydrobenzazepine 38. This was dissolved in THF (15 cm\(^3\)) and butyraldehyde (0.30 cm\(^3\), 3.40 mmol), sodium triacetoxyborohydride (715 mg, 3.37 mmol) and glacial acetic acid (64 \(\mu\)L, 1.12 mmol) were added. After stirring for 24 h, ether (20 cm\(^3\)) and water (25 cm\(^3\)) were added and the aqueous layer was basified to \(pH\) 10 using sodium hydroxide (2.5 M). The aqueous phase was extracted with ether (3 x 25 cm\(^3\)) and the organic extracts were dried (MgSO\(_4\)). After concentration under reduced pressure, chromatography of the residue using light petroleum : ethyl acetate (1:2) containing triethylamine (1%) gave the title compound 39 (242 mg, 46%) as a colourless solid recrystallised as plates from ether (Found: C, 71.0; H, 8.0; N, 5.95%. C\(_{14}H_{21}NO_2\) requires C, 71.5; H, 8.2; N, 6.0%). Found: M\(^+\)+H, 236.1653. C\(_{14}H_{22}NO_2\) requires \(M\), 236.1650; \(\nu_{\max}\) (CDCl\(_3\)) 3368, 3072, 3024, 1545, 1454 and 1378 cm\(^{-1}\); \(\delta\)\(_H\) (300 MHz, CDCl\(_3\)) 0.96 (3 H, t, J 7.5, 4'-H\(_3\)), 1.36 (2 H, sex, J 7.5, 3'-H\(_2\)), 1.57 (2 H, pent, J 7.5, 2'-H\(_2\)), 2.49-2.65 (2 H, m, 1'-H\(_2\)), 2.98 and 3.19 (each 1 H, dd, J 3.5, 13.5, 3-H), 3.64 (1 H, d, J 15, 1-H), 3.99 (1 H, m, 4-H), 4.09 (1 H, d, J 15, 1-H'), 4.83 (1 H, d, J 2, 5-H), 7.17 (1 H, m, ArH), 7.22-7.36 (2 H, m, ArH) and 7.43 (1 H, m, ArH); \(m/z\) (CI) 236 (M\(^+\)+1, 100%).

(2-tert-Butyldimethylsilyloxy methylphenyl)cyclobutylcarbinol 42

tert-Butyldimethylsilyl chloride (0.79 g, 5.24 mmol) in N,N-dimethylformamide (2.1 cm\(^3\)) was added to the diol 41 (1.00 g, 5.21 mmol) and imidazole (0.53 g, 7.78 mmol) in N,N-dimethylformamide (5.2 cm\(^3\)) at –10 °C over a period of 20 min. The mixture was stirred for 2 h at –10 °C then deionised water (50 cm\(^3\)) was added and the aqueous phase extracted with ethyl acetate (3 x 100 cm\(^3\)). The organic extracts were washed with deionised water (3 x 50 cm\(^3\)), brine (50 cm\(^3\)) and dried (Na\(_2\)SO\(_4\)). After concentration under reduced pressure, chromatography eluting with light petroleum : ethyl acetate (9 : 1) gave the title compound 42 (1.27 g, 80%) as an oil (Found: M\(^+\)+H, 307.2099. C\(_{18}H_{31}O_2Si\) requires \(M\), 307.2093);
υₘₐₓ 3065, 3028, 1472, 1071, 838 and 776; δ_H (300 MHz, CDCl₃) 0.02 and 0.06 (each 3 H, s, SiCH₃), 0.82 [9 H, s, (CH₃)₃], 1.56-1.88 (4 H, m), 1.94-2.18 (2 H, m), 2.79 (1 H, sex, J 8, CH), 2.84 (1 H, br. s, OH), 4.62 (1 H, d, J 12, OHCH), 4.74 (1 H, d, J 8, 1-H), 4.85 (1 H, d, J 12, OHCH) and 7.10-7.27 (4 H, m, ArH); δ_C (75.5 MHz, CDCl₃) -5.31, -5.23, 17.89, 18.25, 24.69, 25.30, 25.86, 39.77, 64.20, 74.35, 126.28, 127.34, 127.90, 128.70, 138.29 and 141.09; m/z (CI) 324 (M++18, 1%), 307 (M+1, 2), 289 (20) and 157 (100).

2-(1-Cyclobutylethenyl)phenylmethanol 44

Tetra-n-butylammonium fluoride (1 M, 0.9 cm³, 0.90 mmol) was added to a solution of the silyl ether 43 (269 mg, 0.89 mmol) in THF (10 cm³) at room temperature and the mixture stirred for 2 h. Ether (15 cm³) and water (25 cm³) were added and the aqueous layer extracted with ether (2 x 25 cm³). The ethereal extracts were dried (MgSO₄), filtered and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (19:1 → 5:1) afforded the title compound 44 (139 mg, 83%) as a clear oil (Found: M++H, 189.1277. C₁₃H₁₇O requires M, 189.1279); υₘₐₓ 3335, 3065, 3023, 1634, 1446, 1194, 1034, 901 and 763; δ_H (300 MHz, CDCl₃) 1.55-1.67 (1 H, m), 1.71-2.01 (5 H, m), 3.13 (1 H, pent, J 8, CH), 4.54 (2 H, s, OCH₂), 4.83 and 5.11 (each 1 H, d, J 1, 2''-H), 6.99 (1 H, d, J 7, ArH), 7.11-7.22 (2 H, m, ArH) and 7.36 (1 H, d, J 7, ArH); δ_C (75 MHz, CDCl₃) 17.58, 27.93, 42.10, 63.16, 112.42, 127.07, 127.10, 128.00, 128.47, 137.65, 141.75 and 152.23; m/z (CI) 206 (M++18, 15%), 188 (M+, 20) and 171 (100).

2-(1-Cyclobutylethenyl)benzaldehyde 45

A suspension of manganese dioxide (4.40 g, 50.61 mol) and alcohol 44 (1.90 g, 10.11 mol) in dichloromethane (60 cm³) was stirred at room temperature for 48 h then filtered through Celite® and the residue was washed with dichloromethane (2 x 50 cm³). After concentration under reduced pressure, chromatography of the residue using light petroleum : ethyl acetate (19:1) as the eluent gave the title compound 45 (1.75 g, 93%) as a clear liquid (Found: M++H, 187.1121. C₁₃H₁₅O requires M, 187.1122); υₘₐₓ 3084, 1694, 1596, 1479, 1446, 1391, 1261 and 1195 cm⁻¹; δ_H (300 MHz, CDCl₃) 1.66-1.77 (1 H, m), 1.79-2.13 (5 H, m), 3.31 (1 H, pent, J 8, CH), 4.96 and 5.37 (each 1 H, d, J 1.5, 2'-H), 7.25 (1 H, d, J 7.5, ArH), 7.37 and 7.52 (1 H, t, J 7.5, ArH), 7.93 (1 H, d, J 7.5, ArH) and 10.18 (1 H, s, CHO); δ_C (75 M, CDCl₃) 17.59, 27.75, 42.26, 115.66, 127.21, 127.35, 128.94, 133.25, 133.70, 146.34, 149.20 and 192.41; m/z (CI) 204 (M++18, 15%), 187 (M++1, 60), 186 (M+, 20) and 169 (100).
N-[2-(1-Cyclobutylethenyl)phenyl]methyl prop-2-enylamine 46

Prop-2-enylamine (0.45 cm³, 6.00 mmol) was added to the aldehyde 45 (540 mg, 2.90 mmol) and magnesium sulfate (ca. 5 g) in dichloromethane (30 cm³) at room temperature. The mixture was stirred for 24 h then filtered and concentrated under reduced pressure. The residue was dissolved in methanol (20 cm³) and sodium borohydride (164 mg, 4.33 mmol) was added. After stirring for 2 h, dichloromethane (50 cm³) and water (50 cm³) were added and the mixture basified to pH 10 using aqueous sodium hydroxide (2.5 M). The aqueous phase was extracted with dichloromethane (3 x 50 cm³) and the organic extracts were dried (MgSO₄). Concentration under reduced pressure gave the title compound 46 (600 mg, 91%) as a yellow oil (Found: M++H, 228.1746. C₁₆H₂₂N requires M, 228.1747); \(\nu_{\text{max}}\) 3323, 3070, 1682, 1633, 1455, 1445, 900 and 762; \(\delta_{\text{H}}\) (300 MHz, CDCl₃) 1.45 (1 H, br. s, NH), 1.73 (1 H, m), 1.87-2.11 (5 H, m), 3.21 (1 H, pent, \(J₈\) 8, CH), 3.25 (2 H, dt, \(J₆.₅\) 6.5, 0.5, 1-H₂), 3.75 (2 H, s, ArCH₂), 4.93 (1 H, s, 2''-H), 5.07-5.25 (2 H, m, 3-H₂), 5.19 (1 H, s, 2''-H'), 5.93 (1 H, m, 2-H), 7.06 (1 H, m, ArH), 7.16-7.29 (2 H, m, ArH) and 7.41 (1 H, m, ArH); \(\delta_{\text{C}}\) (75 MHz, CDCl₃) 17.61, 28.04, 42.19, 50.63, 51.85, 112.01, 115.64, 126.27, 126.78, 128.59, 128.69, 136.94, 137.03, 141.83 and 152.70; \(m/z\) (CI) 288 (M⁺+1, 100).

N-[2-(1-Cyclobutylethenyl)phenyl]methyl-N-prop-2-enyl toluene p-sulfonamide 47

The amine 46 (87 mg, 0.383 mmol), triethylamine (80 \(\mu\)L, 0.574 mmol), toluene p-sulfonyl chloride (80 mg, 0.421 mmol) and 4-dimethylaminopyridine (ca. 1 mg) in dichloromethane (5 cm³) were stirred at room temperature for 4 h. Ether (15 cm³) and water (15 cm³) were added and the aqueous layer extracted with ether (2 x 15 cm³). The ethereal extracts were dried (MgSO₄) and concentrated under reduced pressure to give the title compound 47 (140 mg, 96%) (Found: M⁺+H, 382.1847. C₂₃H₂₈NO₂S requires M, 382.1841); \(\delta_{\text{H}}\) (300 MHz, CDCl₃) 1.60 (1 H, m), 1.68-1.99 (5 H, m), 2.38 (3 H, s, CH₃), 3.01 (1 H, pent, \(J₈\) 8.5, CH), 3.67 (2 H, d, \(J₆.₅\) 6.5, 1-H₂), 4.28 (2 H, s, ArCH₂), 4.74 (1 H, t, \(J₁₅\) 1.5, 2''-H), 4.82-4.93 (2 H, m, 3-H₂), 5.06 (1 H, t, \(J₁₅\) 1.5, 2''-H'), 5.41 (1 H, m, 2-H), 6.95 (1 H, dd, \(J₁₅\) 1.5, 7, ArH), 7.09-7.21 (2 H, m, ArH), 7.24 (2 H, d, \(J₈\) 8, ArH), 7.39 (1 H, dd, \(J₁₅\) 1.5, 7.5, ArH) and 7.67 (2 H, d, \(J₈\) 8, ArH); \(m/z\) (CI) 382 (M⁺+1, 20%), 228 (50) and 171 (100).

N-Phenylmethyl-N-prop-2-enyl 2-nitrobenzene sulfonamide 58

2-Nitrophenylsulphonyl chloride (1.43 g, 6.45 mmol) was added to N-(phenylmethyl)prop-2-enylamine 57 (950 mg, 6.46 mmol), triethylamine (1.8 cm³, 12.91 mmol) and 4-dimethylaminopyridine (ca. 2 mg) in dichloromethane (20 cm³) and the mixture stirred for 3 h before water (50 cm³) and ether (50 cm³)
were added. The aqueous phase was extracted with ether (2 x 50 cm³) and the organic extracts were dried (MgSO₄). After concentration under reduced pressure, chromatography of the residue using light petroleum : ethyl acetate (5:1) as eluent gave the title compound 58 (1.63 g, 76%) as a viscous clear oil (Found: M⁺+NH₄, 350.1176. C₁₆H₂₀N₃O₄S requires M, 350.1174); δ₁H (300 MHz, CDCl₃) 3.77 (2 H, d, J 6.5, 1-H₂), 4.45 (2 H, s, ArCH₂), 4.95-5.08 (2 H, m, 3-H₂), 5.50 (1 H, ddd, J 6.5, 10, 17, 2-H), 7.19-7.25 (5 H, m, ArH), 7.51-7.65 (3 H, m, ArH) and 7.93 (1 H, d, J 7.5, ArH); δ₁C (75 MHz, CDCl₃) 49.15, 50.31, 119.63, 124.15, 127.81, 128.30, 128.57, 130.90, 131.70, 131.75, 133.46, 133.96 and 135.30; m/z (CI) 350 (M⁺+18, 100%).

N-Benzyl-N-formylmethyl 2-nitrobenzene sulfonamide 59
A steady stream of ozone was passed through a solution of the alkene 58 (1.11 g, 3.34 mmol) in dichloromethane (25 cm³) at –78 °C until no starting material remained (tlc, ca. 0.5 h). The excess of ozone was purged by a flow of oxygen and then dimethyl sulfide (4.0 cm³, 54.47 mmol) was added. The mixture was allowed to warm to room temperature and stirred for 15 h. After concentration under reduced pressure, chromatography using light petroleum : ethyl acetate (1:1) as eluent gave the title compound 59 (1.04 g, 92 %) as a colourless solid recrystallised from ethyl acetate and light petroleum, m.p. 105-108 °C (decomp.) (Found: C, 53.6; H, 4.45; N, 8.4; S, 9.65%. C₁₅H₁₄N₂O₅S requires, C, 53.9; H, 4.2; N, 8.4; S, 9.6%); νmax (CDCl₃) 3055, 1735, 1546, 1371, 1266 and 1166 cm⁻¹; δ₁H (300 MHz, CDCl₃) 4.11 (2 H, s, CH₂), 4.65 (2 H, s, CH₂), 7.25-7.38 (5 H, m, ArH), 7.65-7.74 (3 H, m, ArH), 8.11 (1 H, d, J 7.5, ArH) and 9.39 (1 H, s, CHO); δ₁C (75 MHz, CDCl₃) 52.60, 55.51, 124.30, 128.56, 128.70, 128.94, 130.90, 131.88, 132.98, 133.78, 134.09, and 196.42; m/z (ES) 690 (90%).

N-(3-Hydroxypropyl)-N-naphth-2-ylmethyl 2-nitrobenzene sulfonamide 61
3-Aminopropanol (4.81 g, 64.03 mmol) was added to naphth-2-aldehyde 60 (5 g, 32.01 mmol) and magnesium sulphate (60 g) in dichloromethane (320 cm³) and the mixture stirred at room temperature for 48 h. The reaction mixture was then filtered and the filtrate concentrated under reduced pressure. The residue was dissolved in methanol (213 cm³), sodium cyanoborohydride (2.01 g, 32.01 mmol) was added and the reaction mixture was stirred at room temperature for one hour. Ether (100 cm³) and deionised water (200 cm³) were added and the aqueous layer was extracted with ether (2 x 100 cm³). The aqueous layer was basified with aqueous sodium hydroxide (2 M) and extracted with dichloromethane (3 x 200 cm³). The dichloromethane extracts were dried (MgSO₄) and concentrated under reduced pressure to afford 3-(naphth-2-ylmethyl)propan-1-ol³⁶ (5.15 g, 75%) as a waxy solid.
(Found: $M^+ + H$, 216.1385. $C_{14}H_{18}NO$ requires M, 216.1383); δ_H (300 MHz, CDCl$_3$) 2.02 (2 H, pent, J 7, 2-H$_2$), 3.90 (2 H, t, J 7, 1-H$_2$), 3.92-4.00 (4 H, m, 2 x CH$_2$), 7.42-7.60 (3 H, m, ArH, NH) and 7.78-8.06 (5 H, m, ArH); m/z (CI) 214 ($M^+ - 1$, 100%).

Sodium carbonate (2.79 g, 26.35 mmol) in deionised water (16 cm3) and tetra-n-butylammonium iodide was added to the aminoalcohol 60 (5.15 g, 23.95 mmol) in acetone (24 cm3). After the mixture was cooled to 0 °C, 2-nitrophenylsulfonyl chloride (5.31 g, 23.95 mmol) in acetone (8 cm3) was added dropwise and the reaction mixture was stirred at room temperature for four hours. Deionised water (200 cm3) was added and the aqueous phase was extracted with dichloromethane (3 x 200 cm3). The organic extracts were dried (Na$_2$SO$_4$) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (1 : 1 → 1 : 4) gave the title compound 61 (6.72 g, 68%) as an oil (Found: $M^+ + H$, 401.1173. $C_{20}H_{21}N_3O_5S$ requires M, 401.1171); ν_{max} 3562, 3360, 1545, 1345, 1162, 1127, 781 and 750; δ_H (300 MHz, CDCl$_3$) 1.59 (2 H, pent, J 7, 2-H$_2$), 2.00 (1 H, br. s, OH), 3.42-3.56 (4 H, m, 2 x CH$_2$), 4.64 (2 H, s, ArCH$_2$), 7.39 (1 H, m, ArH), 7.46-7.53 (2 H, m, ArH), 7.54-7.71 (4 H, m, ArH), 7.73-7.85 (3 H, m, ArH) and 7.97 (1 H, m, ArH); δ_C (75.5 MHz, CDCl$_3$) 30.70, 44.96, 52.16, 59.12, 124.38, 125.98, 126.44, 126.57, 127.48, 127.85, 127.91, 128.84, 130.91, 131.92, 133.09, 133.24, 133.51, 133.76, 142.01 and 148.08; m/z (CI) 418 ($M^+ + 18$, 5%), 399 (10), 278 (65), 261 (85) and 214 (100).

N-Naphth-2-ylmethyl-N-(3-oxopropyl)-2-nitrobenzene sulfonamide 62
Dess-Martin periodinane (5.30 g, 12.5 mmol) was added to the alcohol 61 (2.50 g, 6.25 mmol) in dichloromethane (32 cm3) and the reaction mixture stirred at room temperature until complete (tlc). Aqueous sodium hydroxide (1.3 M, 150 cm3) was added and the aqueous phase was extracted with ether (5 x 100 cm3). The organic extracts were washed with aqueous sodium hydroxide (1.3 M, 150 cm3) and deionised water (150 cm3), then dried (Na$_2$SO$_4$) and concentrated under reduced pressure to give the aldehyde 62 (1.03 g, 2.58 mmol, 41%) as an oil used without further purification (Found: $M^+ + NH_4$, 402.1127. $C_{19}H_{20}N_3O_5S$ requires M, 402.1123); ν_{max} 3096, 1735, 1543, 1535 and 1164; δ_H (500 MHz, CDCl$_3$) 2.50 (2 H, t, J 7, 2-H$_2$), 3.54 (2 H, t, J 7, 3-H$_2$), 4.60 (2 H, s, ArCH$_2$N), 7.3-7.43 (3 H, m, ArH), 7.50-7.65 (4 H, m, ArH), 7.65-7.78 (3 H, m, ArH) and 7.95 (1 H, m, ArH).

N-(6-Methylnaphth-2-yl)methyl-3-hydroxypropylamine 64
3-Aminopropanol (88.2 mg, 1.18 mmol) was added to 2-methyl-6-naphthaldehyde 6337 (0.1 g, 0.59 mmol) and magnesium sulphate (1.5 g) in dichloromethane (6 cm3) and the reaction mixture stirred at...
room temperature for 24 h then filtered and concentrated under reduced pressure. The residue was dissolved in methanol (4 cm3) and sodium cyanoborohydride (37 mg, 0.59 mmol) was added. The reaction mixture was then stirred at room temperature for 1 h and ether (50 cm3) and deionised water (50 cm3) were added. The aqueous layer was extracted with ether (2 x 50 cm3) then basified with aqueous sodium hydroxide (2.5 M) and extracted with dichloromethane (3 x 100 cm3). The organic extracts were dried (MgSO$_4$) and concentrated under reduced pressure to afford the title compound 64 (78 mg, 58%) as a solid, m.p. 74-76 $^\circ$C (Found: M$^+$H, 230.1538. C$_{15}$H$_{20}$NO requires M, 230.1539); ν_{max} 3294, 1608, 1068, 878 and 815; δ_H (300 MHz, CDCl$_3$) 1.78 (2 H, pent, J 7, 2-H$_2$), 2.55 (3 H, s, CH$_3$), 2.96 (2 H, t, J 7, 1-H$_2$), 3.11 (2 H, br. s, NH, OH), 3.86 (2 H, t, J 7, 3-H$_2$), 3.96 (2 H, s, ArCH$_2$), 7.35 and 7.43 (each 1 H, dd, J 8.5, 1.5, ArH), 7.63 (1 H, s, ArH) and 7.71-7.77 (3 H, m, ArH); δ_C (125 MHz, CDCl$_3$) 21.69, 30.80, 49.39, 54.11, 64.39, 124.41, 126.48, 126.76, 127.50, 127.62, 128.40, 131.59, 132.91, 135.36 and 136.06; m/z (CI) 228 (M$^+$, 1%), 172 (100) and 155 (81).

N-(6-Methylnaphth-2-yl)methyl-N-(3-hydroxypropyl) 2-nitrobenzene sulfonamide 65

Sodium carbonate (0.15 g, 1.42 mmol) in deionised water (1 cm3) and tetra-n-butylammonium iodide were added to the aminoalcohol 64 (295 mg, 1.29 mmol) in acetone (3 cm3) and the reaction mixture was cooled to 0 $^\circ$C before a solution of 2-nitrophenylsulfonyl chloride (285 mg, 1.29 mmol) in acetone (1 cm3) was added. The reaction mixture was stirred at room temperature for 4 h then deionised water (30 cm3) was added and the aqueous phase extracted with dichloromethane (3 x 100 cm3). The organic extracts were dried (Na$_2$SO$_4$) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (1 : 1 \rightarrow 1 : 4) as eluent gave the title compound 65 (0.41 g, 77%) as a solid, m.p. 115.5-117.5 $^\circ$C (Found: M$^+$Na, 437.1141. C$_{21}$H$_{22}$N$_2$O$_5$NaS requires M, 437.1142); 3399, 1543, 1344 and 1161; δ_H (200 MHz; CDCl$_3$) 1.55-1.65 (2 H, m, 2-H$_2$), 1.81 (1 H, m, OH), 2.51 (3 H, s, CH$_3$), 3.43-3.54 (4 H, m, 2 x CH$_2$), 4.66 (2 H, s, ArCH$_2$), 7.33-7.37 (2 H, m, ArH), 7.57-7.73 (7 H, m, ArH) and 7.98 (1 H, m, ArH); δ_C (125 MHz, CDCl$_3$) 21.71, 30.80, 49.39, 54.11, 64.39, 126.41, 126.48, 126.76, 127.50, 127.62, 128.40, 131.59, 132.91, 135.36 and 136.06; m/z (CI) 432 (M$^+$+18, 5%), 391 (20) and 256 (100).

N-(6-Methylnaphth-2-yl)methyl-N-(3-oxopropyl) 2-nitrobenzene sulfonamide 66

The Dess-Martin periodinane (462 mg, 1.09 mmol) was added to the aminoalcohol 65 (410 mg, 0.99 mmol) in dichloromethane (5 cm3) and the reaction mixture stirred at room temperature until complete (tlc). Aqueous sodium hydroxide (1.3 M, 25 cm3) was added and the aqueous phase extracted with ether
(5 x 50 cm³). The organic extracts were washed with aqueous sodium hydroxide (1.3 M, 150 cm³), deionised water (150 cm³), dried (Na₂SO₄) and concentrated under reduced pressure to give the **title compound** 66 (397 mg, 97%) as an oil used without further purification (Found: M⁺+H, 413.1158. C₂₁H₂₁N₂O₅S requires M, 413.1166; δmax 1723, 1545, 1370 and 1163; δH (300 MHz; CDCl₃) 2.43 (3 H, s, CH₃), 2.48 (2 H, t, J 7, 2-H₂), 3.53 (2 H, t, J 7, 1-H₂), 4.57 (2 H, s, ArCH₂), 7.25 and 7.32 (each 1 H, dd, J 8.5, 1.5, ArH), 7.50-7.68 (7 H, m, ArH), 7.93 (1 H, m, ArH) and 9.43 (1 H, s, CHO); δC (125 MHz, CDCl₃) 20.68, 40.35, 42.15, 52.01, 123.29, 124.87. 125.70, 126.23, 126.59, 127.24, 127.78, 129.97, 130.34, 130.78, 130.88, 131.97, 132.25, 132.72, 135.19, 147.02 and 198.66; m/z (ES) 413 (M⁺+1, 100%).

(4SR,5RS)-5-Cyclobutyl-4,5-dihydroxy-2-[3-(N-naphth-2-ylmethyl-N-2-nitrophenylsulfonylamino)propyl]-2,3,4,5-tetrahydro-[1H]-2-benzazepine 73

The tetrahydrobenzazepine 52 (250 mg, 1.07 mmol) in methanol (5 cm³) was added to the aldehyde 65 (1.03 g, 2.58 mmol) suspended in methanol (10 cm³), followed by sodium cyanoborohydride (68 mg, 1.07 mmol) and concentrated hydrochloric acid (2 drops). The reaction mixture, which briefly became homogeneous although a precipitate separated out after 10 min, was stirred for 12 h. Deionised water (30 cm³) was added and the aqueous layer extracted with ether (3 x 50 cm³). The ether extracts were dried (MgSO₄) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (1 : 1 → 1 : 4) containing triethylamine (1%) gave the **title compound** 73 (212 mg, 0.35 mmol, 32%) (Found: M⁺+H, 616.2487. C₃₄H₃₈N₃O₆S requires M, 616.2481); δH (300 MHz, CDCl₃) 1.53-1.82 (7 H, m), 2.12-2.25 (2 H, m), 2.40 and 2.54 (each 1 H, m, 1'-H), 2.70-2.79 (2 H, m), 2.86 (1 H, ddd, J 13, 5, 2, 3-H'), 2.97 (1 H, br. s, OH), 3.34 (2 H, t, J 7, 3'-H₂), 3.41 (1 H, dd, J 13, 1.5, 1-H), 3.59 (2 H, m, 1-H' and 4-H), 4.62 and 4.77 (each 1 H, d, J 15, NHCHPh), 6.86 (1 H, d, J 7, ArH), 7.12 (1 H, t, J 7, ArH), 7.30 (1 H, m, ArH), 7.43 (1 H, dd, J 8, 1.5, ArH), 7.50-7.54 (2 H, m, ArH), 7.59 (1 H, m, ArH), 7.67-7.70 (3 H, m, ArH), 7.75-7.88 (4 H, m, ArH) and 7.98 (1 H, d, J 8, ArH); m/z (ES) 616 (M⁺+1, 100%) and 582 (12).

(4SR,5RS)-5-Cyclobutyl-4,5-dihydroxy-2-[3-(N-6-methylnaphth-2-ylmethyl-N-2-nitrophenylsulfonylamino)propyl]-2,3,4,5-tetrahydro-[1H]-2-benzazepine 74

The tetrahydrobenzazepine 52 (84 mg, 0.36 mmol) in methanol (2.5 cm³) was added to a suspension of the aldehyde 66 (90 mg, 0.22 mmol) in methanol (1.5 cm³) followed by sodium cyanoborohydride (14 mg, 0.22 mmol) and concentrated aqueous hydrogen chloride (2 drops). The reaction mixture became
homogeneous and a precipitate separated out after 10 minutes. The reaction mixture was stirred overnight, then deionised water (10 cm3) was added. The aqueous layer was extracted with ether (3 x 25 cm3) and the organic extracts were dried (MgSO$_4$) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (1 : 1 → 1 : 4) containing triethylamine (1%) as the eluent gave the title compound 74 (43 mg, 31%) as an oil (Found: M$^+$-H, 630.2637. C$_{33}$H$_{40}$N$_3$O$_6$S requires M$^+$, 630.2632); ν_{max} 3467, 3054, 1543, 1372, 1348, 1161 753 and 736; δ_H (300 MHz, CDCl$_3$) 1.3 (1 H, m), 1.53-1.79 (6 H, m), 2.12-2.24 (2 H, m, 2'-H$_2$), 2.40 and 2.50 (each 1 H, m, 1'-H), 2.54 (3 H, s, CH$_3$), 2.71 (1 H, d, J 13, 1-H), 2.76 (1 H, m, 3-H), 2.84 (1 H, ddd, J 13, 5, 2, 3-H$'$), 3.30 (1 H, br. s, OH), 3.33 (2 H, t, J 8, 3'-H$_2$), 3.42 (1 H, d, J 1.5, 4-H), 3.58 (1 H, br. s, OH), 3.59 (1 H, d, J 13, 1-H$'$), 4.57 and 4.59 (each 1 H, d, J 15, NHC$_{Ph}$), 6.84 (1 H, d, J 8, ArH), 7.12 (1 H, t, J 8, ArH), 7.29-7.41 (3 H, m, ArH), 7.58-7.73 (7 H, m, ArH) and 7.81 and 7.97 (each 1 H, d, J 8, ArH); δ_C (75.5 MHz, CDCl$_3$) 17.63, 21.63, 23.52, 26.29, 29.62, 39.47, 46.07, 52.01, 56.47, 58.88, 59.31, 72.90, 79.32, 124.12, 125.86, 126.62, 126.98, 127.08, 127.17, 127.49, 128.01, 128.62, 128.93, 130.05, 130.82, 130.98, 131.58, 132.25, 133.27, 133.38, 134.92, 136.01, 141.15, 141.78 and 147.90; m/z (ES) 630 (M$^+$+1, 100%).

5-Cyclobutyl-5-hydroxy-2-[3-(N-naphth-2-ylmethylamino)propyl]-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one 76

Dess-Martin periodinane (63 mg, 0.15 mmol) was added to the dihydroxytetrahydrobenzazepine 73 (70 mg, 0.114 mmol) in dichloromethane (1.5 cm3) and the reaction mixture stirred for two hours at room temperature. Aqueous sodium hydroxide (1.3 M, 20 cm3) was added and the aqueous phase was extracted with dichloromethane (3 x 30 cm3). The organic extracts were washed with aqueous sodium hydroxide (1.3 M, 20 cm3) and aqueous phase was extracted with dichloromethane (3 x 30 cm3). The organic extracts were washed with aqueous sodium hydroxide (1.3 M, 50 cm3) and deionised water (50 cm3) then dried (Na$_2$SO$_4$) and concentrated under reduced pressure to give the crude hydroxyketone 75 (59.4 mg, 0.10 mmol, 85%) which was dissolved in N,N-dimethylformamide (1.0 cm3). Thiophenol (14 mg, 0.13 mmol) and potassium carbonate (47 mg, 0.34 mmol) were added and the reaction mixture stirred for 12 h. Deionised water (15 cm3) was added and the pH adjusted to pH 12 using aqueous sodium hydroxide (2 M). The aqueous phase was extracted with ethyl acetate (5 x 25 cm3) and the organic extracts were dried (MgSO$_4$) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (4 : 1) containing triethylamine (1%) gave the title compound 76 (17 mg, 41%); δ_H (400 MHz, CDCl$_3$) 1.51-1.79 (5 H, m, CH$_2$), 1.87 (1 H, m), 2.19-2.30 (2 H, m, 2'-H$_2$), 2.39-2.51 (2 H, m, 3'-H$_2$), 2.62-2.70 (2 H, m, 1'-H$_2$), 3.51 (1 H, m), 3.51 and 3.72 (each 1 H, d, J 12, 1-H), 3.90 (1 H, d, J 16, 3-H), 3.91 (2 H, s,
NCH2Ph), 4.18 (1 H, d, J 16, 3-H'), 7.01 (1 H, dd, J 8, 1.5, ArH), 7.15 and 7.23 (each 1 H, dt, J 8, 1.5, ArH), 7.39-7.46 (3 H, m, ArH) and 7.70-7.80 (5 H, m, ArH).

5-Cyclobutyl-5-hydroxy-2-[3-(N-6-methylnaphth-2-ylmethylamino)propyl]-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one 78

Dess-Martin periodinane (142 mg, 0.334 mmol) was added to the dihydroxytetrahydrobenzazepine 74 (140 mg, 0.223 mmol) in dichloromethane (1.2 cm³) and the reaction mixture stirred for 2 h at room temperature. Aqueous sodium hydroxide (1.3 M, 50 cm³) was added and the aqueous phase was extracted with dichloromethane (3 x 50 cm³). The organic extracts were washed with aqueous sodium hydroxide (1.3 M, 50 cm³) and deionised water (50 cm³) then dried (Na2SO4) and concentrated under reduced pressure to give the crude hydroxyketone 77 (111 mg, 0.18 mmol, 80%); δH (300 MHz, CDCl3) 1.53-1.64 (4 H, m, 2 x CH2), 1.71-1.89 (3 H, m), 2.17-2.27 (3 H, m), 2.55 (3 H, s, CH3), 3.25-3.40 (5 H, m, 1-H, 1'-H 2 and 3'-H 2), 3.64 and 3.69 (each 1 H, d, J 16, 1-H and 3-H), 4.04 (1 H, d, J 3-H'), 4.66 (2 H, s, ArCH2N), 6.79 (1 H, d, J 7.5, ArH), 7.13 (1 H, t, J 7.5, ArH), 7.25 (1 H, d, J 7.5, ArH), 7.36 and 7.41 (each 1 H, d, J 8, ArH), 7.57-7.75 (8 H, m, ArH) and 7.99 (1 H, d, J 8, ArH).

Thiophenol (2.15 mg, 0.02 mmol) and potassium carbonate (7.2 mg, 0.052 mmol) were added to the crude 2-nitrophenylsulfonamide 77 (10 mg, 0.016 mmol) in N,N-dimethylformamide (0.5 cm³) and the mixture stirred overnight at room temperature. Deionised water (10 cm³) was added and the pH adjusted to pH 12 using aqueous sodium hydroxide (2 M). The aqueous phase was extracted with ethyl acetate (5 x 25 cm³) and the organic extracts were dried (MgSO4) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (4 : 1 → 2 : 1) containing triethylamine (1%) as eluent gave the title compound 78 (7 mg, 97%) (Found: M+H, 443.2700. C29H35N2O2 requires M, 443.2698); δH (300 MHz, CDCl3) 1.51-1.74 (5 H, m), 1.78-1.88 (2 H, m), 2.19 (2 H, m, 2'-H2), 2.35-2.42 (5 H, m, CH3 and CH2), 2.61 (2 H, t, J 7, CH2), 3.45 (1 H, m), 3.47 (1 H, d, J 16, 1-H), 3.69 (1 H, d, J 16, 1-H'), 3.82 (2 H, s, NCH2Ph), 3.84 and 4.12 (each 1 H, d, J 3-H), 6.95 (1 H, d, J 8, ArH), 7.06-7.23 (3 H, m, ArH), 7.29 (1 H, d, J 8, 1.5, ArH), 7.50 (1 H, s, ArH) and 7.67 (4 H, m, ArH); m/z (Cl) 443 (M+1, 8%) and 425 (2).

N-(3-Hydroxypropyl)-N-phenylmethyl-2-nitrobenze sulfonamide 80

Sodium carbonate (3.67 g, 34.59 mmol) in deionised water (21 cm³) and tetra-n-butylammonium iodide (trace) were added to 3-(N-phenylmethyl)aminopropanol 79 (5.19 g, 31.45 mmol) in acetone (32 cm³) and the mixture cooled to –10 °C. 2-Nitrophenylsulfonyl chloride (6.97 g, 31.45 mmol) in acetone (10.5
was added dropwise over a period of 40 min and the reaction mixture was stirred at room temperature for 2 h. Deionised water (200 cm3) was added and the aqueous phase was extracted with dichloromethane (3 x 200 cm3). The organic extracts were dried (MgSO$_4$) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (1 : 1 → 1 : 4 containing triethylamine (1%) as eluent gave the sulfonamide 8038 (8.63 g, 78%) as an oil (Found: M$^+$+H, 351.1005. C$_{16}$H$_{19}$N$_2$O$_5$S requires M+, 351.1009); ν_{max} 3562, 3399, 3092, 3031, 1669, 1589, 1543, 1371, 1344, 1161, 781, and 739; δ_{H} (200 MHz, CDCl$_3$) 1.59 (2 H, pent, J 6, 2-H$_2$), 1.81 (1 H, br. s, OH), 3.43 (2 H, t, J 6, 3-H$_2$), 3.55 (2 H, br. t, J 6, 1-H$_2$), 4.53 (2 H, s, PhCH$_2$), 7.21-7.37 (5 H, m, ArH), 7.65-7.77 (3 H, m, ArH) and 7.98 (1 H, m, ArH); δ_{C} (75.5 MHz, CDCl$_3$) 30.59, 44.77, 51.90, 59.10, 124.40, 128.21, 128.43, 128.87, 130.92, 131.93, 133.54, 133.74, 135.73, 142.20 and 148.02; m/z (ES) 351 (M$^+$+1, 100%).

3-(N-2-nitrophenylsulfonyl-N-phenylmethyl)aminopropanic acid 81

Dess-Martin periodinane (1.8 g, 4.26 mmol) was added to the 3-sulfonylaminoalcohol 80 (0.75 g, 2.13 mmol) in dichloromethane (11 cm3) and the reaction mixture was stirred for 2 h at room temperature. Aqueous sodium hydroxide (1.3 M, 30 cm3) was added and the aqueous phase was extracted with dichloromethane (3 x 30 cm3). The organic extracts were washed with aqueous sodium hydroxide (1.3 M, 30 cm3) and deionised water (50 cm3) then dried (Na$_2$SO$_4$) and concentrated under reduced pressure to leave crude 3-(N-2-nitrophenylsulfonyl-N-phenylmethyl)aminopropanal (0.7 g, 95%). 2-Methyl-2-butene (10.06 cm3, 20.11 mmol), sodium chlorite (1.13 g, 12.57 mmol) and sodium dihydrogen phosphate (2.41 g, 20.11 mmol) were added to the 3-(N-2-nitrophenylsulfonyl-N-phenylmethyl)aminopropanal (0.7 g, 2.01 mmol) in 2,2-dimethylpropanol and water (1 : 1, 50.3 cm3) and the reaction mixture was stirred for 12 h. Brine (60 cm3) and ethyl acetate (60 cm3) were added and the aqueous phase was extracted with ethyl acetate (3 x 75 cm3). The organic extracts were dried (MgSO$_4$) and concentrated under reduced pressure to give the title compound 81 (0.63 g, 81%) (Found: M$^+$+H, 365.0804. C$_{16}$H$_{17}$N$_2$O$_6$S requires M$, 365.0808$; ν_{max} 2600-3600, 1712, 1543, 1369, 1349, 1163, 941, 771 and 738; δ_{H} (200 MHz, CDCl$_3$) 2.46 (2 H, t, J 8, 2-H$_2$) 3.55 (2 H, t, J 8, 3-H$_2$), 4.56 (2 H, s, PhCH$_2$), 7.24-7.37 (5 H, m, Ar-H), 7.63-7.75 (3 H, m, Ar-H) and 8.04 (1 H, m, Ar-H); δ_{C} (75.5 MHz, CDCl$_3$) 33.25, 43.06, 52.31, 124.53, 128.39, 129.02, 131.03, 132.11, 132.61, 133.18, 134.03, 135.49, 148.04 and 176.22; m/z (CI) 382 (M$^+$+18, 50%), 365 (M$^+$+1, 8) and 178 (100).
(4RS,5SR)-5-Cyclobutyl-4,5-dihydroxy-2-[3-(N-2-nitrophenylsulfonyl-N-phenylmethyl)aminopropanoyl]-2,3,4,5-tetrahydro-[1H]-2-benzazepine 84

N-Methylmorpholine-N-oxide (26 mg, 0.23 mmol) and osmium tetraoxide (5 mg, 0.021 mmol) were added to the dihydrobenzazepine 83 (111.4 mg, 0.21 mmol) in acetone (3.4 cm³), 2,2-dimethylpropan-2-ol (3.4 cm³) and deionised water (1.6 cm³) and the reaction mixture stirred for 12 h. Ethyl acetate (20 cm³) was added followed by deionised water (20 cm³) and the aqueous phase was extracted with ethyl acetate (3 x 25 cm³). The organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (1 : 1) → ethyl acetate : methanol (20 : 1) all containing triethylamine (1%) as eluent gave the title compound 84 (118.14 mg, 0.21 mmol, 99%) as a solid (Found: M⁺+H, 580.2127. C₃₀H₃₄N₃O₇S requires M, 580.2118); νmax 3416, 1634, 1543, 1455, 1372, 1344, 1162 and 735; δH (300 MHz, dimethyl sulfoxide-d₆, 150 °C) 1.29 (1 H, m) 1.73-1.60 (2 H, m), 1.88-1.77 (1 H, m), 2.06 (1 H, m), 2.19 (1 H, m), 2.50 (3 H, m), 3.51 (2 H, t, J 7.5, 3'-H₂), 3.55 (1 H, m, 3-H), 3.68 (1 H, dd, J 15, 3, 3'-H'), 3.79 (1 H, m, 4-H), 4.17 (2 H, br. s, 2 x OH), 4.28 (1 H, d, J 15, 1-H'), 4.51 (2 H, s, PhCH₂N), 4.76 (1 H, d, J 15, 1-H'), 7.03 (1 H, m, ArH), 7.11 and 7.20 (each 1 H, t, J 6, ArH), 7.29 (5 H, m, ArH), 7.66 (1 H, d, J 9, ArH), 7.76 (1 H, m, ArH), 7.84 (2 H, m, ArH) and 7.96 (1 H, d, J 9, ArH); m/z (CI) 580 (M⁺+1, 45%), 393 (27) and 106 (100).

(4RS,5SR)-5-Cyclobutyl-4,5-dihydroxy-2-[3-(N-phenylmethyl)aminopropanoyl]-2,3,4,5-tetrahydro-[1H]-2-benzazepine 85

Thiophenol (29 mg, 0.27 mmol) and potassium carbonate (99 mg, 0.72 mmol) were added to the 2-nitrobenzene sulfonamide 84 (118 mg, 0.21 mmol) in N,N-dimethylformamide (5.12 cm³) and the mixture stirred for 12 h. Deionised water (40 cm³) was added and the pH adjusted to pH 12 using aqueous sodium hydroxide (2 M). The aqueous phase was extracted with ethyl acetate (5 x 40 cm³) and the organic extracts were dried (MgSO₄) and concentrated under reduced pressure. Chromatography of the residue using light petroleum : ethyl acetate (1 : 1 → 1 : 4) containing triethylamine (1%) as eluent gave the title compound 85 (76 mg, 94%) as an oil (Found: M⁺+H, 395.2338. C₂₄H₃₁N₂O₃ requires M, 395.2335); νmax 3390, 3059, 3023, 1631, 1455, 1207, 1097, 1026, 997, 734 and 699; δH (300 MHz, dimethyl sulfoxide-d₆, 150 °C) 1.30 (1 H, m) 1.67-1.75 (2 H, m), 1.85 (1 H, m), 2.08 (1 H, m), 2.23 (1 H, m), 2.54 (2 H, m), 2.81 (2 H, br. s, CH₂), 3.72 (2 H, s, CH₂), 3.85 (3 H, m), 4.15 (1 H, m), 4.43 and 4.92 (each 1 H, d, J 15, 1-H), 7.05-735 (8 H, m, ArH) and 7.70 (1 H, d, J 7, ArH); δC (75.5 MHz, dimethyl sulfoxide-d₆, 150 °C) 16.45, 21.20, 21.35, 32.19, 44.30, 50.73, 52.21, 72.52, 77.98, 78.46,
125.64, 125.79, 125.88, 127.27, 127.38, 128.08, 128.66, 133.82, 139.93, 141.91 and 170.52; m/z (CI) 395 (M^+ +1, 43%), 288 (28) and 108 (100).

2-(2-Bromophenylmethoxy)tetrahydro-[2H]-pyran 88

Dihydropyran (2.25 g, 26.7 mmol) and toluene p-sulfonic acid (102 mg, 0.535 mmol) were added to the 2-bromobenzyl alcohol 87 (1.0 g, 5.35 mmol) in dichloromethane (20 cm^3) at 0 °C. The reaction was allowed to warm to room temperature and was stirred for 3 h. Dichloromethane (20 cm^3) was added and the solution washed with saturated aqueous sodium bicarbonate (3 x 20 cm^3) and brine (2 x 10 cm^3). The organic phase was dried (MgSO_4) and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1 : 4) gave the title compound 88 (1.42 g, 98%) as a colourless oil (Found: M^+ +NH_4, 288.0597. C_{12}H_{19}BrNO_2 requires M, 288.0594); \(\nu_{\text{max}} \) 1569, 1440, 1348, 1201, 1124 and 1024 cm\(^{-1}\); \(\delta_H \) (300 MHz; CDCl_3) 1.52-1.71 (3 H, m) 1.70-1.90 (2 H, m), 1.95 (1 H, m), 3.62 (1 H, m, 6-H), 3.96 (1 H, m, 6-H'), 4.60 (1 H, d, J 13, ArCH), 4.93 (1 H, t, J 3.5, 2-H), 4.87 (1 H, d, J 13 ArCH), 7.19 (1 H, m, ArH), 7.36 (1 H, dt, J 1.5, 8, ArH) and 7.55-7.60 (2 H, m, Ar-H); \(\delta_C \) (75 MHz; CDCl_3) 19.73, 25.85, 30.92, 62.58, 68.98, 98.81, 123.13, 127.74, 129.17, 129.44, 132.88 and 138.24; m/z (CI) 288, 290 (M^+ + 18, 1.5%) and 102 (100).

Cyclopentanoyl 2-(tetrahydro-[2H]-pyran-2-yloxymethyl)benzene 89

tert-Butyllithium (0.56 cm^3, 1.6 M in pentane) was added to 2-(2-bromophenylmethoxy)tetrahydro-[2H]-pyran 88 (100 mg, 0.44 mmol) at -78 °C in tetrahydrofuran (2 cm^3) and the solution stirred for 15 min. Cyclopentylcarboxaldehyde (45 mg, 0.46 mmol) in tetrahydrofuran (1 cm^3) was added and the mixture stirred for 30 min. before saturated aqueous ammonium chloride (1 cm^3) was added. The mixture was extracted with ethyl acetate (3 x 10 cm) and the organic extracts dried (MgSO_4) and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1 : 9) as eluent gave yield cyclopentyl 2-(tetrahydro-[2H]-pyran-2-yloxymethyl)phenyl carbinol (113 mg, 89%), a 50 : 50 mixture of diastereoisomers, as a colourless oil (Found: M^+ +H, 291.1954. C_{18}H_{27}O_3 requires M, 291.1955); \(\nu_{\text{max}} \) 3436, 1453, 1119, 1024, 905 and 760 cm\(^{-1}\); \(\delta_H \) (500 MHz; CDCl_3) 0.84 (1 H, m), 1.00 (1 H, m), 1.30-1.80 (11 H, m), 1.92 (1 H, m), 2.37 (1 H, sext, J 8), 2.70 (1 H, br, s, OH), 3.48 and 3.80 (each 1 H, m), 4.43 (0.5 H, d, J 10, ArHCHO), 4.54-4.68 (2.5 H, m), 4.74 and 4.93 (each 0.5 H, d, J 10, ArHCHO), 7.17 (1 H, m, ArH), 7.24-7.28 (2 H, m, ArH) and 7.41 (1 H, d, J 8, ArH); \(\delta_C \) (125 MHz; CDCl_3) 19.44, 19.46, 25.63, 25.90, 25.92, 26.03, 29.03, 29.96, 29.98, 30.41, 30.60, 30.77, 45.36, 45.51, 62.36, 62.43, 67.73, 67.92, 75.08, 75.29, 98.02, 98.15, 127.30, 127.61, 128.79, 128.81, 130.31, 130.40, 135.53, 135.62, 143.49 and 144.39; m/z (CI) 308 (M^+ +18, 10%) and 187 (100).
Pyridine (126 mg, 1.56 mmol) was added to the Dess Martin periodinane (113 mg, 0.26 mmol) in dichloromethane (4 cm3). After 20 min, cyclopentyl 2-(tetrahydro-[2H]-pyran-2-yloxy)phenyl carbinol (70 mg, 0.24 mmol) in dichloromethane (2 cm3) was added and the solution was stirred for 4 h. Saturated aqueous sodium sulfite (5 cm3) was added and the mixture was stirred vigorously for 1 h then extracted with dichloromethane (3 x 15 cm3). The organic extracts were dried (Na$_2$SO$_4$) and concentrated under reduced pressure. Chromatography of the residue using ethyl acetate : light petroleum (1 : 9) gave the title compound 89 (67 mg, 98%) as a colourless oil (Found: M$^+$+H, 289.1794. C$_{18}$H$_{25}$O$_3$ requires M, 289.1798); ν max 1769, 1678, 1599, 1573, 1451, 1352, 1219, 1200, 1129 and 1035 cm$^{-1}$; δH (300 MHz; CDCl$_3$), 1.51-1.84 (10 H, m), 1.90-1.94 (4 H, m), 3.53 (1 H, m), 3.61 (1 H, quin, J 8, CHCO), 3.93 (1 H, m), 4.75 (1 H, t J 4, OCHO), 4.87 and 5.03 (each 1 H, d, J 14, OHCH), 7.39 and 7.52 (each 1 H, dt, J 1.5, 8, ArH) and 7.71 (2 H, d, J 8, ArH); δC (75 MHz; CDCl$_3$) 19.80, 25.72, 26.50, 26.52, 30.03, 30.12, 30.85, 49.27, 62.58, 67.50, 98.77, 127.18, 128.54, 128.60, 131.45, 137.63, 139.29 and 207.12; m/z (CI) 289 (M$^+$+1, 1%) and 187 (100).

(1-Cyclopentylethenyl)-2-(tetrahydro-[2H]-pyran-2-yloxy)benzene 90

n-Butyllithium (207 μL, 0.33 mmol) was added to a solution of methyltriphenylphosphonium bromide (124 mg, 0.35 mmol) in tetrahydrofuran (2 cm3) and the solution stirred for 30 min before the ketone 89 (40 mg, 0.14 mmol) was added and the mixture stirred for 18 h. Saturated aqueous ammonium chloride (1 cm3) was added and the mixture extracted using ethyl acetate (3 x 4 cm3). The organic extracts were washed with a saturated aqueous sodium bicarbonate (2 x 5 cm3) and brine (1 x 5 cm3), then dried (MgSO$_4$) and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1 : 4) as eluent gave the title compound 90 (35 mg, 80%) as a colourless oil (Found: M$^+$+H, 287.2011. C$_{19}$H$_{27}$O$_2$ requires M, 287.2006); ν max 3066, 3024, 1633, 1453, 1350, 1201, 1118, 1026, 905 and 766 cm$^{-1}$; δH (300 MHz; CDCl$_3$) 1.41-1.98 (14 H, m), 2.75, 3.58 and 3.96 (each 1 H, m), 4.51 (1 H, d, J 12, OCHH), 4.75 (1 H, t, J 3.5, OCHO), 4.80 (1 H, d, J 12, OCHH), 4.92 (1 H, d J 1.5, 2'-H), 5.22 (1 H, t, J 2, 2'-H'), 7.15 (1 H, dd, J 2, 7, ArH), 7.34-7.24 (2 H, m, ArH) and 7.54 (1 H, m, ArH); δC (100 MHz; CDCl$_3$) 19.64, 24.80, 25.79, 30.92, 31.75, 31.80, 47.75, 62.28, 67.12, 98.41, 112.66, 127.01, 127.12, 128.71, 135.59, 143.44 and 151.99; m/z (CI) 314 (M$^+$+178, 3%), 287 (M$^+$+1, 4) and 102 (100).

2-(1-Cyclopentylethenyl)phenylmethanol 91

Toluene p-sulfonic acid (14 mg, 0.07 mmol) was added to the tetrahydropyran ether 90 (100 mg, 0.35 mmol) in methanol (2 cm3) and the solution stirred for 4 h. Water (4 cm3) was added and the mixture extracted with ether (3 x 10 cm3). The organic extracts were washed with a saturated aqueous sodium...
hydrogen carbonate (2 x 10 cm³) then dried (MgSO₄) and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum ether (3 : 7) as eluent gave the title compound 91 (61 mg, 86%) as a colourless oil (Found: M⁺, 202.1351. C₁₄H₁₈O requires M⁺, 202.1352); \(\nu\)max 3368, 3067, 1633, 1480, 1456, 1195, 1031, 901 and 765 cm⁻¹; \(\delta\)H (500 MHz; CDCl₃) 1.22-1.32, 1.41-1.48, 1.52-1.57 and 1.62-1.68 (each 2 H, m), 2.55 (1 H, m, CH), 4.53 (2 H, s, OCH₂), 4.76 and 5.11 (each 1 H, t, J 1, 2'-H) and 6.97, 7.12, 7.16 and 7.33 (each 1 H, m, ArH); \(\delta\)C (75 MHz; CDCl₃) 24.81, 31.91, 47.87, 63.31, 112.82, 127.33, 127.47, 128.21, 128.89, 138.03, 142.94 and 152.48; m/z (CI) 220 (M⁺+18, 15%), 202 (M⁺, 20) and 185 (100).

2-(1-Cyclopentylethenyl)benzaldehyde 92

Dess-Martin periodinane (415 mg, 0.98 mmol) was added to the alcohol 91 (180 mg, 0.89 mmol) in dichloromethane (6 cm³) and the mixture stirred at room temperature for 2 h then poured into a rapidly stirred aqueous sodium sulfite (25 cm³). After 20 min, the mixture was extracted with dichloromethane (3 x 10 cm³) and the organic extracts dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography of the residue using ether : petroleum ether (1 : 4) gave the title compound 92 (155 mg, 86%) as a colourless oil (Found: M⁺+H, 201.1274. C₁₄H₁₇O requires M⁺, 201.1274); \(\nu\)max 3382, 1719, 1705, 1596, 1251, 906 and 771 cm⁻¹; \(\delta\)H (300 MHz; CDCl₃) 1.44-1.89 (8 H, m), 2.92 (1 H, m), 4.96 and 5.45 (each 1 H, t, J 1, 2'-H), 7.40 (1 H, dd, J 1.5, 8, ArH), 7.45 (1 H, dt, J 1, 7.5, ArH), 7.55 (1 H, dt, J 1.5, 8, ArH), 7.97 (1 H, dd, J 1.5, 8, Ar-H) and 10.26 (1 H, d, J 0.5, CHO); \(\delta\)C (75 MHz; CDCl₃) 24.73, 31.68, 48.17, 115.94, 127.46, 127.59, 129.49, 133.58, 133.97, 148.14, 149.48 and 192.83; m/z (CI) 218 (M⁺+18, 30%), 201 (M⁺+1, 100) and 183 (95).

N-[2-(1-Cyclopentylethenyl)phenylmethyl] prop-2-enyl amine 93

Magnesium sulfate (1.4 g) and prop-2-enylamine (86 mg, 1.5 mmol) were added to 2-(1-cyclopentylethenyl)benzaldehyde 92 (150 mg, 0.75 mmol) in dichloromethane (10 cm³) and the solution stirred for 24 h then filtered and concentrated under reduced pressure. The residue was dissolved in methanol (8 cm³) and sodium borohydride (42 mg, 1.125 mmol) was added. The mixture was stirred for 3 h then concentrated under reduced pressure and the residue dissolved in ethyl acetate (15 cm³). This solution was washed with aqueous hydrogen chloride (1 M, 5 cm³) and brine (10 cm³), dried (MgSO₄) and concentrated under reduced pressure. Chromatography of the residue using dichloromethane as eluent gave the title compound 93 (164 mg, 91%) as a colourless oil (Found: M⁺+H, 242.1908. C₁₅H₂₄N requires M⁺, 242.1903); \(\nu\)max 1632, 1540, 1439, 1371, 1165, 1126, 913 and 772 cm⁻¹; \(\delta\)H (500 MHz; CDCl₃) 1.34, 1.48, 1.61 and 1.72 (each 2 H, m), 2.57 (1 H, m), 3.16 (2 H, dt, J 6, 1.5, 1-
H2), 4.58 (2 H, s, ArCH2), 4.79 (1 H, m, vinylic H), 5.00-5.16 (3 H, m, vinylic H), 5.80 (1 H, m, 2-H), 6.98 (1 H, dd, J 1, 7, ArH), 7.11 and 7.16 (each 1 H, dt, J 1.5, 7.5, ArH) and 7.31 (1 H, dd, J 1, 7.5, ArH); δC (75 MHz; CDCl3) 24.98, 32.03, 47.98, 51.08, 52.32, 112.50, 116.26, 126.73, 127.44, 128.34, 129.02, 129.11, 137.36, 137.36, 138.30 and 153.22; m/z (EI) 242 (M+1, 10%), 200 (15), 169 (28), 131 (60) and 115 (65).

N-[2-(1-cyclopentylethenyl)phenylmethyl]-N-prop-2-enyl 2-nitrobenzenesulfonamide 94

4-Dimethylaminopyridine (50 mg), triethylamine (3.71 cm3, 2.66 mmol) and 2-nitrobenzenesulfonyl chloride (4.51 g, 20.4 mmol) were added to [2-(1-cyclopentylethenyl)phenylmethyl]prop-2-enylamine 93 (4.27 g, 17.7 mmol) in dichloromethane (215 cm3) and the solution was stirred for 20 min at room temperature. The reaction mixture was then washed with water (100 cm3) and brine (2 x 100 cm3), dried (MgSO4) and concentrated under reduced pressure. Chromatography of the residue using dichloromethane as eluent gave the title compound 94 (6.9 g, 92%) as a colourless oil (Found: M+ Na, 449.1510. C23H26N2O4SNa requires M, 449.1505); νmax 3082, 1634, 1540, 1371, 1165, 1126, 914 and 774 cm⁻¹; δH (500 MHz; CDCl3) 1.40, 1.60, 1.73 and 1.79 (each 2 H, m), 2.60 (1 H, m), 3.92 (2 H, d, J 6, 1-H2), 4.62 (2 H, s, ArCH2), 4.83 (1 H, s, 2''-H), 5.00-5.06 (2 H, m, 3-H2), 5.24 (1 H, t, J 1.5, 2''-H'), 5.70 (1 H, m, 2-H), 7.07 (1 H, m, ArH), 7.21 (2 H, m, ArH), 7.36 (1 H, dd, J 3, 6, ArH), 7.31 (1 H, dd, J 1.5, 2''-H'), 7.63-7.74 (3 H, m, ArH) and 8.03 (1 H, dd, J 1.5, 8, Ar-H); δC (125 MHz; CDCl3) 24.89, 32.04, 47.93, 48.65, 50.00, 113.17, 119.42, 124.54, 124.57, 127.23, 127.49, 129.26, 131.54, 132.07, 132.48, 132.66, 133.81, 134.58, 143.74, 148.27 and 152.14; m/z (ES) 465 (100%) and 449 (M+23, 30).

5-Cyclopentyl-2-[3-(N-2-nitrophenylsulfonyl-N-phenylmethyl)aminopropanoyl]-2,3-dihydro-[1H]-2-benzazepine 97

Potassium carbonate (60 mg, 0.44 mmol) and thiophenol (17 µL, 0.23 mmol) were added to the N-nosyldihydrobenzazepine 95 (48 mg, 0.23 mmol) in N,N-dimethylformamide (1 cm3) and the solution stirred for 24 h. Water (3 cm3) was added, and the mixture extracted with ethyl acetate (3 x 5 cm3), dried (MgSO4) and concentrated under reduced pressure to give 5-cyclopentyl-2,3-dihydro-[1H]-2-benzazepine 96 as a yellow oil; δH (500 MHz, CDCl3) 1.37, 1.56, 1.68 and 1.80 (each 2 H, m), 2.94 (3 H, m, 3-H2 and CH), 3.16 (1 H, br. s, NH), 3.61 (2 H, s, 1-H2), 5.89 (1 H, dt, J 1.5, 7, 4-H) and 7.15-7.33 (4 H, m, ArH); δC (125 MHz, CDCl3) 25.14, 32.53, 42.44, 45.37, 49.26, 119.92, 126.34, 127.63, 127.83, 129.43, 138.06, 142, 65 and 149.68.

TBTU (81 mg, 0.25 mmol) and di-isopropylethylamine (80 µL, 0.46 mmol) were added to 3-[N-(2-nitrobenzyl)sulfonyl-N-phenylmethyl)aminopropanoic acid 81 (83 mg, 0.23 mmol) in
dichloromethane (2 cm³) at 0 ºC and the mixture was stirred for 15 min. 5-Cyclopentyl-2,3-dihydro-
[1H]-2-benzazepine 96 (48 mg, 0.23 mmol), prepared as outlined above, in dichloromethane (2 cm³)
was added and the solution stirred at room temperature for 16 h. Dichloromethane (10 cm³) was added
and the solution washed using saturated aqueous ammonium chloride (3 x 15 cm³). The organic layer
was dried (MgSO₄) and concentrated under reduced pressure. Chromatography of the residue using ethyl
acetate in light petroleum (3 : 7) gave the title compound 97 (117 mg, 91%), a mixture of rotamers, as a
colourless oil (Found: M⁺+H, 560.2226. C₃₁H₃₄N₃O₅S requires M, 560.2214); νmax 1636, 1540, 1438,
1370, 1163 and 733 cm⁻¹; δH (500 MHz; CDCl₃) 1.25, 1.49, 1.58 and 1.72 (each 2 H, m), 2.27 (1.2 H, t,
J 7, 2'-H₂), 2.39 (0.8 H, t, J 7, 2'-H₂), 2.87 (1 H, m, 1''-H), 3.18 (1.2 H, d, J 7.5, 3-H₂), 3.38-3.54 (2.8 H,
m, 3-H₂ and 3'-H₂), 3.87 (0.8 H, s, PhCH₂), 4.14 (1.2 H, s, PhCH₂), 4.43 (1.2 H, s, 1-H₂), 4.45 (0.8 H, s,
1-H₂), 5.67 (0.6 H, t, J 7.5, 4-H), 5.72 (0.4 H, t, J 7.5, 4-H), 7.05-7.30 (9 H, m, ArH), 7.45-7.60 (3 H, m,
ArH) and 7.83 (1 H, m, ArH); m/z (ES) 582 (M⁺+23, 100%) and 560 (45).

2-Bromo-5-fluorophenylmethanol 106
2-Bromo-5-fluorobenzyl bromide 105 (5.0 g, 18.66 mmol) was added to a suspension of calcium
carbonate (7.5 g) in dioxane - water (1:1.5, 150 cm³) and the mixture heated at 100 ºC for 24 h. The
reaction mixture was allowed to cool then was extracted with ether. The organic extracts were dried
(Na₂SO₄) and concentrated under reduced pressure. Trituration with cold hexane gave the alcohol 106
(3.78 g, 99%) as a colourless solid, m.p. 92-94 ºC (lit.41: 92-94 ºC) (Found: M⁺, 203.9583. C₇H₆OBrF
requires M, 203.9586); νmax 3298, 3202, 1579, 1464, 1440, 1410, 1361, 1266, 1219, 1148, 1065, 1025
and 809 cm⁻¹; δH (300 MHz, CDCl₃) 2.05 (1 H, t, J 6, OH) 4.77 (2 H, d, J 6, CH₂), 6.93 (1 H, td, J 3, 8.5,
4-H), 7.32 (1 H, dd, J 3, 9, 6-H) and 7.53 (1 H, dd, J 5, 8.5, 3-H); δC (75 MHz, CDCl₃) 64.38, 115.29 and
115.65 (d, 2JC-F 27), 115.65, 115.69 and 115.92 (d, 2JC-F 18), 133.49 and 133.59 (d, 3JC-F 8), 141.90 and
141.98 (d, 3JC-F 7), and 163.58 and 160.86 (d, 1JC-F 246); m/z (Cl) 204 (M⁺+1, 30%), 142 (50), 124 (25),
123 (50), 107 (50) and 96 (100).

1-Bromo-4-fluoro-2-[(4-methoxyphenyl)methoxymethyl]benzene 107
The bromoalcohol 106 (11.0 g, 53.66 mmol) in tetrahydrofuran (50 cm³) was added to a suspension of
sodium hydride (60% dispersion; 4.3 g) in tetrahydrofuran – N,N-dimethylformamide (1:2, 150 cm³) at
0 ºC under nitrogen. The reaction mixture was warmed to room temperature over 2 h and 4-
methoxybenzyl chloride (7.43 cm³) was added slowly. After the reaction was complete (tlc), water and
ether were added and the mixture extracted into ether. The organic extracts were dried (Na₂SO₄) and
concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1 :
9) as eluent gave the title compound 107 (16.39 g, 94%) as colourless oil (Found: M+, 324.0159. C_{15}H_{14}O_2BrF requires M, 324.0162); \(\nu_{\text{max}}\) 3000, 1612, 1514, 1467, 1249, 1174, 1150, 1112, 1088, 1033 and 812 cm\(^{-1}\); \(\delta_t\) (300 MHz, CDCl\(_3\)) 3.87 (3 H, s, CH\(_3\)), 4.59 and 4.63 (each 2 H, s, CH\(_2\)), 6.86-7.00 and 7.28-7.42 (each 3 H, m, ArH) and 7.52 (1 H, dd, \(J\) 9, 6, ArH); \(\delta_c\) (75 MHz, CDCl\(_3\)) 55.22, 70.69, 72.58, 113.83, 115.49 and 115.64 (d, \(J_{C,F}\) 11), 115.79 and 115.96 (d, \(J_{C,F}\) 13), 129.37, 129.75, 133.36 and 133.46 (d, \(J_{C,F}\) 7.5), 140.15 and 140.25 (d, \(J_{C,F}\) 7.5), 159.32, and 160.51 and 163.78 (d, \(J_{C,F}\) 246); \(m/z\) (CI) 342 (M\(^++\)18, 20%), 324 (M\(^+\), 40) and 121 (100).

4-Fluoro-2-[(4-methoxyphenyl)methoxymethyl]cyclobutanoylbenzene 109

A crystal of iodine followed by 1,2-dibromoethane (2 drops) were added to magnesium turnings (312 mg, 13 mmol) in tetrahydrofuran (3 cm\(^3\)) and the mixture stirred under nitrogen for 10 min. Bromobenzene 107 (3.25 g, 10 mmol) in tetrahydrofuran (10 cm\(^3\)) was added and the mixture heated under reflux for 3 h. After cooling to room temperature, \(N\)-methoxy-\(N\)-methylcyclobutylcarboxamide 108 (1.861 g, 13 mmol) was added dropwise and the mixture stirred for 12 h. Saturated aqueous ammonium chloride was add and the mixture extracted with ether. The organic extracts were dried (NaSO\(_4\)) and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1 : 9) as eluent afforded the title compound 109 (1.94 g, 60%) as colourless oil (Found: M\(^++\)H, 329.0552. C\(_{20}\)H\(_{22}\)O\(_3\)F requires M, 329.0553); \(\nu_{\text{max}}\) 1675, 1609, 1583, 1513, 1248, 1225, 1114, 1081, 975 and 821 cm\(^{-1}\); \(\delta_t\) (300 MHz, CDCl\(_3\)) 1.82-2.48 (6 H, m, 3 x CH\(_2\)), 3.84 (3 H, s, OCH\(_3\)), 3.94 (1 H, pent, \(J\) 8.5, 1'-H), 4.64 and 4.95 (each 2 H, s, OCH\(_2\)), 6.94 (2 H, d, \(J\) 8.5, ArH), 7.02 (1 H, td, \(J\) 8, 2.5, ArH), 7.37 (2 H, d, \(J\) 8.5, ArH), 7.58 (1 H, dd, \(J\) 10.5, 2.5, ArH) and 7.70 (1 H, dd, \(J\) 8.5, 5.5, ArH); \(\delta_c\) (75 MHz, CDCl\(_3\)) 17.84, 25.11, 43.56, 55.19, 69.82, 72.60, 113.01 and 113.31 (d, \(J_{C,F}\) 22.5), 113.75, 114.59 and 114.91 (d, \(J_{C,F}\) 24), 129.25, 129.98 and 129.94 (d, \(J_{C,F}\) 3), 130.17, 131.49 and 131.62 (d, \(J_{C,F}\) 10), 144.94 and 145.05 (d, \(J_{C,F}\) 8), 159.16, 163.15 and 165.51 (d, \(J_{C,F}\) 252), and 202.33; \(m/z\) (CI) 329 (M\(^++\)1, 15%), 241 (52), 221 (50), 191 (45) and 121 (100).

1-(1-Cyclobutylethenyl)-4-fluoro-2-[(4-methoxyphenyl)methoxymethyl]benzene 110

Cp\(_2\)TiMe\(_2\) (25.78 mmol, 5.37 g) in THF (20 cm) was added dropwise to the ketone 109 (3.68 g, 11.21 mmol) in THF (100 cm\(^3\)) at 0 °C under nitrogen and the mixture was heated at 65 °C for 15 h then concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1 : 9) as eluent gave the title compound 110 (3.40 g, 93%) as pale yellow oil (Found: M\(^++\)NH\(_4\), 344.2033. C\(_{21}\)H\(_{27}\)O\(_2\)FN requires M, 344.2026); \(\nu_{\text{max}}\) 3078, 3035, 1611, 1586, 1513, 1493, 1301, 1249, 1178, 1151, 1067, 1037, 961, 906, 875 and 823 cm\(^{-1}\); \(\delta_t\) (300 MHz, CDCl\(_3\)) 1.60-2.14 (6 H, m, 3 x CH\(_2\)), 3.18 (1 H,
m, 1'-H), 3.86 (3 H, s, OCH₃), 4.52 and 4.55 (each 2 H, s, ArCH₂), 4.92 and 5.20 (each 1 H, s, 2'-H), 6.91-7.01 (3 H, m, ArH), 7.08 (1 H, dd, J 8.5, 5.5, ArH), 7.29 (1 H, dd, J 9.5, 3, ArH) and 7.35 (2 H, d, J 8.5, ArH); δC (75 MHz, CDCl₃) 17.60, 27.89, 42.03, 55.19, 69.05, 72.21, 112.81, 113.51 and 113.77 (d, 2JC-F 19.5), 113.77, 114.58 and 114.88 (d, 2JC-F 22.5), 113.95 and 114.24 (d, 2JC-F 20), 113.95 and 114.24 (d, 2JC-F 22), 129.80 and 129.90 (d, 3JC-F 7.5), 136.50 and 136.55 (d, 4JC-F 4), 140.07 and 140.16 (d, 5JC-F 7.5), 151.21, and 163.50 and 160.25 (d, 6JC-F 244); m/z (CI) 344 (M⁺+18, 20%), 309 (40), 205 (45), 138 (65) and 121 (100).

2-(1-Cyclobutylethenyl)-5-fluorophenylmethanol 111
Dichlorodicyanoquinone (1.81 g, 7.96 mmol) was added to the 4-methoxybenzyl ether 110 (2.16 g, 6.63 mmol) in dichloromethane and water (10:1, 99 cm³) and the mixture stirred for 2 h at room temperature. Water (50 cm³) was added, the mixture extracted using dichloromethane and the organic extracts were dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1 : 1) as eluent gave the title compound 111 (1.284 g, 94%) after distillation, b.p. 70 ºC at 0.1 mmHg) as a colourless oil (Found: M⁺, 206.1107. C₁₃H₁₅OF requires M⁺, 206.1107); νₘₐₓ 3340, 1635, 1606, 1586, 1491, 1266, 1230, 1147, 1031, 905, 874 and 823 cm⁻¹; δH (300 MHz, CDCl₃) 1.64-2.16 (7 H, m, 3 x CH₂, OH), 3.20 (1 H, m, 1''-H), 4.65 (2 H, d, J 6, CH₂O), 4.92 and 5.23 (each 1 H, s, 2'-H), 6.95 (1 H, td, J 8.5, 2.5, ArH), 7.07 (1 H, dd, J 8.5, 5.5, ArH) and 7.24 (1 H, dd, J 10, 2.5, ArH); δC (75 MHz, CDCl₃) 17.54, 27.69, 42.28, 113.47 and 113.51 (d, 2JC-F 22), 113.95 and 114.24 (d, 2JC-F 20), 113.95 and 114.24 (d, 2JC-F 22), 129.80 and 129.90 (d, 3JC-F 7.5), 136.50 and 136.55 (d, 4JC-F 4), 140.07 and 140.16 (d, 5JC-F 7.5), 151.21, and 163.50 and 160.25 (d, 6JC-F 244); m/z (EI) 206 (M⁺, 40%), 189 (100), 177 (65), 163 (58), 159 (50), 149 (35), 147 (55), 137 (38) and 133 (40).

2-(1-Cyclobutylethenyl)-5-fluorobenzaldehyde 112
Dess-Martin periodinane (9.00 g, 21.23 mmol) was added to the benzyl alcohol 111 (3.43 g, 16.73 mmol) in dichloromethane (50 cm³) at room temperature under nitrogen and mixture stirred for 12 h. Water (20 cm³) and aqueous sodium hydroxide (1.3 M, 20 cm³) were added, and the mixture extracted with dichloromethane (3 x 50 cm³), dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1 : 1) as eluent gave the title compound 112 (2.9 g, 85%) as a colourless oil (Found: M⁺, 204.0948. C₁₃H₁₃OF requires M⁺, 204.0950); νₘₐₓ 1692, 1604, 1489 and 1413 cm⁻¹; δH (300 MHz, CDCl₃) 1.68-2.18 (6 H, m, 3 x CH₂), 3.29 (1 H, m, 1''-H), 4.99 (1 H, t, J 1, 2'-H), 5.42 (1 H, t, J 1.5, 2'-H'), 7.07 (2 H, m, ArH), 7.63 (1 H, ddd, J 9, 2, 12, ArH) and 10.14 (1 H, d, J 3, CHO); δC (75 MHz, CDCl₃) 17.54, 27.69, 42.28, 113.18 and 113.47 (d, 2JC-F 22),
116.29, 120.35 and 120.64 (d, $^2J_{CF}$ 22), 130.82 and 130.91 (d, $^3J_{CF}$ 7), 135.33 and 135.42 (d, $^3J_{CF}$ 7), 142.27 and 142.31 (d, $^4J_{CF}$ 3), 148.22, 160.06, and 163.35 (d, $^1J_{CF}$ 247) and 191.01; m/z (CI) 222 (M$^+$+18, 50%), 206 (20), 205 (100), 187 (55) and 176 (68).

[2-(1-Cyclobutylethenyl)-5-fluorophenyl]methyl(prop-2-enyl)amine 113

Anhydrous magnesium sulfate (6.1 g, 50.68 mmol) was added to the aldehyde 112 (2.4 g, 11.76 mmol) and prop-2-enylamine (3.6 cm3, 47.92 mmol) in dichloromethane (50 cm3) at room temperature and the reaction stirred for 24 h, then filtered and concentrated under reduced pressure. Sodium borohydride (670 mg, 17.72 mmol) was added to the residue in methanol (20 cm3) and the mixture stirred for 2 h, then concentrated under reduced pressure and diluted with water (30 cm3). The mixture was extracted with dichloromethane (5 x 30 cm3) and the organic extracts dried (Na$_2$SO$_4$) and concentrated under reduced pressure to afford the title compound 113 (2.88 g, 99%) as a yellow oil (Found: M$^+$, 245.1571. C$_{16}$H$_{20}$NF requires M, 245.1580); ν_{max} 3079, 1638, 1606, 1585, 1491, 1447, 1266, 1227, 1149 and 905 cm$^{-1}$; δ_H (300 MHz, CDCl$_3$) 1.50-2.04 (6 H, m, 3 x CH$_2$), 3.06 (1 H, m, CH), 3.17 (2 H, d, J 5.5, 1'-H$_2$), 3.64 (2 H, s, ArCH$_2$N-), 4.81 (1 H, t, J 1.5, 2''-H), 5.03 (1 H, dd, J 10, 1.8, 3-H), 5.10 (1 H, t, J 1.5, 2''-H'), 5.12 (1 H, dd, J 17, 2, 3-H'), 5.84 (1 H, m, 2-H), 6.80 (1 H, td, J 8, 2.5, ArH), 6.92 (1 H, dd, J 8.5, 6, ArH) and 7.08 (1 H, dd, J 10, 2.5, ArH); δ_C (75 MHz, CDCl$_3$) 17.57, 27.95, 42.15, 50.21, 51.75, 112.59, 112.83 and 113.11 (d, $^2J_{CF}$ 21), 114.85 and 115.13 (d, $^3J_{CF}$ 21), 115.81, 129.88 and 129.98 (d, $^3J_{CF}$ 7.5), 136.73, 137.41 and 137.45 (d, $^4J_{CF}$ 3), 139.62 and 139.71 (d, $^3J_{CF}$ 7), 151.79, and 160.18 and 163.42 (d, $^1J_{CF}$ 243); m/z (EI) 246 (M$^+$+1, 30%), 217 (30), 204 (25), 176 (30), 162 (40), 147 (60), 133 (40) and 41 (100).

N-[2-(1-cyclobutylethenyl)-5-fluorophenyl]methyl-N-prop-2-enyl 2-nitrophenylsulfonamide 114

2-Nitrophenylsulfonyl chloride (2.40 g, 10.83 mmol), triethylamine (4 cm3) and 4-dimethylamino-pyridine (ca. 5 mg) were added to the amine 113 (2.19 g, 8.92 mmol) in dichloromethane (80 cm3) at room temperature under nitrogen and the mixture stirred for 12 h. Ether (250 cm3) and water (250 cm3) were added and the aqueous layer extracted with ether (2 x 150 cm3). The organic extracts were dried (MgSO$_4$) then concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1:1) as eluent gave the title compound 114 (3.30 g, 86%) (Found: M$^+$+NH$_4^+$, 448.1695. C$_{22}$H$_{25}$N$_3$O$_4$SF requires M, 448.1706); ν_{max} 3083, 1608, 1586, 1545, 1491, 1440, 1369, 1357, 1270, 1164, 1126, 914 and 778 cm$^{-1}$; δ_H (300 MHz, CDCl$_3$) 1.60-2.04 (6 H, m, 3 x CH$_2$), 3.13 (1 H, m, CH), 3.95 (2 H, d, J 6, 1-H$_2$), 4.59 (2 H, s, ArCH$_2$N-), 4.88 (1 H, t, J 1.5, 2''-H), 5.06 (1 H, dd, J 17, 1, 3-H),
5.11 (1 H, dd, J 10, 1, 3-H′), 5.24 (1 H, t, J 1.5, 2″-H′), 5.61 (1 H, m, 2-H), 6.91 (1 H, td, J 8, 2.5, ArH), 6.99-7.14 (2 H, m, ArH), 7.62-7.80 (3 H, m, ArH) and 8.06 (1 H, dd, J 8, 1, ArH); δC (75 MHz, CDCl3) 17.55, 27.95, 41.98, 49.87, 113.41 and 113.65 (d, 2JC-F 18), 113.65 and 113.92 (d, 2JC-F 20.5), 113.96, 119.31, 124.15, 130.15 and 130.26 (d, 3JC-F 7.5), 130.98, 131.68, 131.78, 133.60, 133.76, 135.03 and 135.12 (d, 2JC-F 7), 137.45 and 137.49 (d, 4JC-F 3), 147.76, 150.75, and 160.33 and 163.59 (d, 1JC-F 244.5); m/z (CI) 448 (M++18, 20%), 401 (40), 246 (100), 244 (90) and 189 (90).

References

