Supplementary data for:

Synthesis of a 6-aryloxymethyl-5-hydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one: a muscarinic (M₃) antagonist

Paul Evans, Alan T. L. Lee and Eric J. Thomas*

The School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
e-mail: e.j.thomas@manchester.ac.uk

Experimental

General

Low resolution mass spectra were recorded on a Micromass Trio 200 spectrometer; high resolution mass spectra were recorded on a Kratos Concept IS spectrometer. Modes of ionisation were electron impact (EI), chemical ionisation (CI) using ammonia, or electrospray in positive or negative mode (ES±). For halogenated compounds, characteristic groups of peaks due to different isotopes were observed. Infrared spectra were recorded on a Genesis FTIR spectrometer as evaporated films (from deuterochloroform or dichloromethane) on sodium chloride plates. Nuclear magnetic resonance spectra were performed using deuterated chloroform (CDCl₃) as the solvent unless otherwise stated. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Varian INOVA Unity 500 and 300 (500 and 300 MHz) spectrometers. Residual non-deuterated solvent was used as the internal standard. Coupling constants (J) are quoted in Hertz (Hz). Carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded on a Varian INOVA Unity 300 (75MHz) spectrometer. Flash column chromatography was carried out using Merck silica gel 60H (40-60 nm, 230-300 mesh). Thin layer chromatography (TLC) was carried out using plastic plates coated with Merck HF254/366 silica gel. All reagents and solvents were purified by standard techniques and reactions in non-aqueous solvents were carried out under an atmosphere of nitrogen or argon.

2-Bromo-1,3-bis(bromomethyl)benzene 6
N-Bromsuccinimide (106 g, 595 mmol) and azobisisobutyronitrile (ca. 50 mg) were added to a solution of 2-bromo-m-xylene 5 (50 g, 270 mmol) in carbon tetrachloride (500 cm³) and the reaction mixture was stirred under reflux for 16 h. The mixture was filtered, the precipitate washed with ether (2 x 100 cm³), and the filtrate and washings were concentrated under reduced pressure. Chromatography of the residue using light petroleum as eluent gave the tribromide 6 (49.22 g, 54 %), as a white solid, m.p. 101-103 °C (lit., 5 97-98 °C); \(\nu_{\text{max}} \) 2358, 1427, 1261, 1209, 1116, 1025, 866, 800 and 724 cm⁻¹; \(\delta_{\text{H}} \) (300 MHz, CDCl₃) 7.46 (2 H, d, \(J 7.5 \), ArH), 7.33 (1 H, m, ArH) and 4.69 (4 H, s, 2 x CH₂); \(m/z \) (EI) 344 (M⁺, 3%), 342, (M⁺, 3), 265 (36), 263 (74), 261 (38), 182 (38), 184 (40) and 103 (100).

2-Bromo-3-(bromomethyl)-1-(2,6-dimethoxyphenoxymethyl)benzene 7

2,6-Dimethoxyphenol (24.61 g, 54.3 mmol) in tetrahydrofuran (100 cm³) was added dropwise to a cooled (0 °C) suspension of sodium hydride (2.61 g, 54.3 mmol, 60 % w/w dispersion in mineral oil) in tetrahydrofuran (278 cm³) and the mixture was stirred vigorously for 30 mins, before adding the bromide 6 (24.61 g, 72.4 mmol) in tetrahydrofuran (100 cm³). The reaction was stirred under reflux for 16 h then cooled (0 °C), and saturated aqueous ammonium chloride (500 cm³) was added. The mixture was extracted with ether (3 x 500 cm³) and the organic extracts were washed with brine, dried (MgSO₄) and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (0 : 100 \(\rightarrow \) 50 : 50) as eluent gave the title compound 7 (15.35 g, 51 %) as a white solid, m.p. 106-108 °C (Found: M⁺, 413.9459. \(C_{16}H_{16}O_{3}^{79}Br_{2} \) requires \(M \), 413.9461); \(\nu_{\text{max}} \) 1596, 1494, 1478, 1435, 1296, 1256, 1218, 1111, 1046, 1027, 791, 767 and 720 cm⁻¹; \(\delta_{\text{H}} \) (300 MHz, CDCl₃) 7.81 (1 H, br. dd, \(J 7.5, 2, \) ArH), 7.47-7.34 (2 H, m, ArH), 7.06 (1 H, t, \(J 8.5, \) ArH), 6.63 (2 H, d, \(J 8.5, \) ArH), 5.15 and 4.71 (each 2 H, s, CH₂) and 3.86 (6 H, s, 2 x OCH₃); \(\delta_{\text{C}} \) (75 MHz, CDCl₃) 153.96, 139.54, 137.13, 130.34, 129.76, 127.84, 124.35, 105.54, 74.40, 56.41 and 34.40; \(m/z \) (CI) 434 (M⁺+18, 100%) and 417 (22).

[2-Bromo-3-(2,6-dimethoxyphenoxymethyl)phenyl]methanol 8

The dibromide 7 (15.78 g, 38 mmol) and potassium carbonate (1.49 g, 11 mmol) were heated under reflux in dioxane:water (1 : 1, 180 cm³) for 16 h. The reaction mixture was then cooled and extracted with ethyl acetate (4 x 200 cm³). The organic extracts were washed with brine, dried (Na₂SO₄) and concentrated under reduced pressure to give the title compound 8 (13.72 g, 99%), as a white solid, m.p. 101-102 °C (Found: M⁺+H, 353.0380. \(C_{16}H_{11}O_{4}^{79}Br \) requires \(M \), 353.0383); \(\nu_{\text{max}} \) 3401, 1597, 1495, 1478, 1297, 1256, 1217, 1111, 1022, 777 and 765 cm⁻¹; \(\delta_{\text{H}} \) (300 MHz, CDCl₃) 7.78 (1 H, br. dd, \(J 7.5, 2, \) ArH), 7.48-7.35 (2 H, m, ArH), 7.05 (1 H, t, \(J 8.5, \) ArH), 6.63 (2 H, d, \(J 8.5, \) ArH), 5.15 and 4.79 (each 2 H, s, CH₂) and 3.85 (6 H, s, 2 x CH₃) and 2.31 (1 H, br. s, OH); \(\delta_{\text{C}} \) (75 MHz, CDCl₃) 153.99, 139.98,
2-[2-(2,6-Dimethoxyphenoxymethyl)-6-(hydroxymethyl)phenyl]propan-2-ol 9

n-Butyllithium (1.6 M in hexanes, 19.0 cm³, 31 mmol) was added dropwise to a cooled (-78 ºC) solution of the bromide 8 (5.0 g, 14 mmol) in tetrahydrofuran (50 cm³) and the mixture was stirred for 45 mins before acetone (5.19 cm³, 71 mmol) was added dropwise. After a further 2 h at -78 ºC, saturated methanolic ammonium chloride (20 cm³) and water (50 cm³) were added. The mixture was extracted with ethyl acetate (4 x 50 cm³) and the organic extracts were washed with brine, dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography of the residue using ethyl acetate : light petroleum (1 : 3) as eluent gave the title compound 9 (3.51 g, 75%), as a white solid, m.p. 99-101 ºC (Found: M++NH₄, 350.1963. C₁₉H₂₈NO₅ requires M, 350.1962). υ max 3451, 1597, 1494, 1478, 1296, 1255, 1112, 1031, 771 and 732 cm⁻¹; δH (300 MHz, CDCl₃) 7.56 and 7.36 (each 1 H, dd, J 7.5, 1.5, ArH), 7.24 (1 H, t, J 7.5, ArH), 7.05 (1 H, t, J 8.5, ArH), 6.57 (2 H, d, J 8.5, ArH), 5.26 and 4.86 (each 2 H, s, CH₂), 3.88 (6 H, s, 2 x OCH₃) and 1.93 (6 H, s, 2 x CH₃); δC (75 MHz, CDCl₃) 153.94, 146.92, 138.24, 136.72, 135.20, 133.77, 132.70, 126.83, 124.32, 105.44, 75.76, 75.10, 66.40, 56.27 and 33.29; m/z (CI) 332 (5%), 315 (3), 297 (21) and 154 (100).

2-[2-(tert-Butyldimethylsilyloxyethyl)-6-(2,6-dimethoxyphenoxymethyl)phenyl]propan-2-ol 10

tert-Butyldimethylsilyl chloride (2.33 g, 15.5 mmol) was added to a cooled (0 ºC) solution of the diol 9 (3.44 g, 10.4 mmol) and imidazole (1.76 g, 25.9 mmol) in anhydrous dichloromethane (43.3 cm³) and the mixture stirred for 2 h at room temperature. Water (50 cm³) was added and the mixture was extracted with dichloromethane (3 x 50 cm³). The organic extracts were washed with brine, dried (Na₂SO₄) and concentrated under reduced pressure. Chromatography of the residue using ethyl acetate : light petroleum (1 : 3) as eluent gave the title compound 10 (4.58 g, 99%) as a colourless oil (Found: M⁺+Na, 469.2382. C₂₅H₃₈O₅SiNa requires M, 469.2381); υ max 3503, 1597, 1494, 1478, 1255, 1113, 838 and 775 cm⁻¹; δH (300 MHz, CDCl₃) 7.62 and 7.33 (each 1 H, dd, J 7.5, 2, ArH), 7.24 (1 H, t, J 7.5, ArH), 7.05 (1 H, t, J 8.5, ArH), 6.63 (2 H, d, J 8.5, ArH), 5.47 (1 H, s, OH), 5.27 and 5.00 (each 2 H, s, CH₂), 3.89 (6 H, s, 2 x OCH₃) and 0.96 [9 H, s, OSi(CH₃)₂] and 0.15 [6 H, s, OSi(CH₃)₃]; δC (75 MHz, CDCl₃) 154.04, 147.03, 137.39, 136.90, 135.33, 133.55, 131.81, 126.44, 124.22, 105.43, 75.37, 74.84, 67.31, 56.28, 32.95, 26.17, 18.51 and -4.80; m/z (ES) 469 (M⁺+23, 100%).

2-[2-(tert-Butyldimethylsilyloxyethyl)-6-(2,6-dimethoxyphenoxymethyl)phenyl]propene 11

Supplementary Material for Organic & Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2008
Methane sulfonyl chloride (3.89 cm³, 50.3 mmol) was added dropwise to a cooled (0 °C) solution of the alcohol 10 (4.48 g, 10.1 mmol), triethylamine (14.00 cm³, 100.5 mmol) and 4-dimethylaminopyridine (45.1 mg, 0.4 mmol) in dichloromethane (50.5 cm³) and the mixture was stirred for 16 h at room temperature. Water (50 cm³) was added and the mixture extracted with dichloromethane (3 x 50 cm³). The organic extracts were washed with brine, dried (MgSO₄) and concentrated under reduced pressure. Chromatography of the residue using ethyl acetate : light petroleum (1 : 10 → 1 : 3) as eluent gave the title compound 11 (2.82 g, 66%) as a colourless oil (Found: M⁺, 428.2378. C₂₅H₃₆O₄Si requires M⁺, 428.2377); υ max 1596, 1493, 1478, 1254, 1114, 838 and 774 cm⁻¹; δH (300 MHz, CDCl₃) 7.67 and 7.53 (each 1 H, d, J 7.5, ArH), 7.36 (1 H, t, J 7.5, ArH), 7.04 (1 H, t, J 8.5, ArH), 6.62 (2 H, d, J 8, ArH), 5.30 (1 H, m, 1-H), 4.96 and 4.94 (each 1 H, d, J 11, ArH), 4.82 (1 H, m, 1-H'), 4.78 and 4.71 (each 1 H, d, J 13.5, ArHC₇H₇), 3.85 (6 H, s, 2 x OCH₃), 2.09 (3 H, s, 2-CH₃), 0.99 [9 H, s, OSiC(CH₃)₃] and 0.15 and 0.14 (each 3 H, s, SiCH₃); δC (75 MHz, CDCl₃) 154.23, 142.80, 140.61, 137.71, 137.58, 134.68, 128.03, 127.11, 126.20, 123.97, 116.13, 105.66, 72.36, 62.91, 56.34, 26.28, 25.00, 18.71 and -4.99; m/z (CI) 446 (M⁺+18, 24%), 429 (1), 297 (34) and 143 (100).

2-[6-(2,6-Dimethoxyphenoxymethyl)-2-(hydroxymethyl)phenyl]propene 12
Tetra-n-butylammonium fluoride (1 M in tetrahydrofuran, 9.22 cm³, 9.22 mmol) was added dropwise to the silyl ether 11 (3.29 g, 7.68 mmol) in tetrahydrofuran (76.8 cm³) and the mixture stirred for 1 h at room temperature. After concentration under reduced pressure, chromatography of the residue using ether : light petroleum (1 : 4) gave the title compound 12 (2.08 g, 86%) as a pale oil (Found: M⁺+H, 315.1593. C₁₉H₂₃O₄ requires M⁺, 315.1591); υ max 3409, 1640, 1596, 1493, 1478, 1296, 1254, 1112, 902 and 773 cm⁻¹; δH (300 MHz, CDCl₃) 7.74 (1 H, dd, J 7.5, 1, ArH), 7.46-7.32 (2 H, m, ArH), 7.05 (1 H, t, J 8, ArH), 6.63 (2 H, d, J 8.5, ArH), 5.36 (1 H, m, 1-H), 5.07 and 4.95 (each 1 H, d, J 11, ArH), 4.88 (1 H, m, 1-H'), 4.72 and 4.65 (each 1 H, d, J 12.5, ArH), 3.85 (6 H, s, 2 x OCH₃), 2.13 (3 H, s, 2-CH₃) and 1.91 (1 H, br. s, OH); δC (75 MHz, CDCl₃) 154.18, 143.46, 141.76, 137.49, 135.35, 128.94, 128.63, 127.64, 127.49, 124.08, 116.56, 105.64, 72.30, 63.54, 56.38 and 25.52; m/z (CI) 332 (M⁺+18, 39%), 315 (5), 297 (12), 178 (62), 172 (64), 161 (99) and 143 (100).

3-(2,6-Dimethoxyphenoxy)methyl)-2-propen-2-ylbenzaldehyde 13
Dimethyl sulfoxide (1.41 cm³, 19.9 mmol) in dichloromethane (2 cm³) was added dropwise to a cooled (-78 °C) solution of oxalyl chloride (0.87 cm³, 9.96 mmol) in dichloromethane (13 cm³) and the mixture stirred for 30 mins before adding the alcohol 12 (2.08 g, 6.64 mmol) in dichloromethane (10 cm³). The reaction was stirred for a further 30 mins then triethylamine (5.55 cm³, 39.8 mmol) was added dropwise and the mixture was allowed to warm to 0 °C and stirred for 30 mins. Saturated aqueous ammonium
chloride (50 cm3) was added and the mixture was extracted with dichloromethane (3 x 50 cm3). The organic extracts were washed with brine, dried (Na$_2$SO$_4$) and concentrated under reduced pressure. Chromatography of the residue using ether: light petroleum (1 : 3) as eluent gave the title compound 13 (1.80 g, 87%) as a pale yellow oil (Found: M$^{+}$H, 313.1441. C$_{19}$H$_{21}$O$_4$ requires M$^+$, 313.1434); ν_{max} 1691, 1596, 1494, 1478, 1297, 1254, 1216, 1113 and 774 cm$^{-1}$; δ_{H} (300 MHz, CDCl$_3$) 10.25 (1 H, s, C$_7$H$_2$O), 8.06 and 7.93 (each 1 H, dd, J 7.5, 1, ArH), 7.48 (1 H, t, J 8, ArH), 7.06 (1 H, t, J 8.5, ArH), 6.62 (2 H, d, J 8.5, ArH), 5.51 (1 H, pent, J 1.5, 1'-H), 5.12 and 4.99 (each 1 H, d, J 11.5, ArHCH), 4.99 (1 H, q, J 1, 1'-H'), 3.85 (6 H, s, 2 x OCH$_3$) and 2.20 (3 H, t, J 1, 2'-CH$_3$); δ_{C} (75 MHz, CDCl$_3$) 192.89, 154.07, 146.78, 140.65, 137.04, 136.39, 135.43, 132.91, 127.61, 127.15, 124.33, 118.91, 105.47, 71.41, 56.26 and 26.74; m/z (Cl) 332 (35%), 313 (85) and 295 (100).

N-[3-(2,6-Dimethoxyphenoxy)methyl]-2-(propen-2-yl)phenylmethyl]prop-2-enylamine 14

Prop-2-enylamine (0.80 cm3, 10.7 mmol), was added to magnesium sulfate (9.19 g) and the aldehyde 13 (1.67 g, 5.34 mmol) in dichloromethane (55 cm3), and the mixture stirred for 18 h at room temperature then filtered and concentrated under reduced pressure. The residue was dissolved in anhydrous methanol (36 cm3), the solution was cooled to 0 °C, and sodium borohydride (304.5 mg, 8.01 mmol) was added. The suspension was stirred for 2 h at 0 °C and for a further 1 h at room temperature, then concentrated under reduced pressure and dichloromethane (50 cm3) and water (50 cm3) were added. Aqueous sodium hydroxide (2 M) was added until the pH was ca. 10 and the aqueous phase was extracted with dichloromethane (3 x 50 cm3). The organic extracts were washed with brine, dried (MgSO$_4$) and concentrated under reduced pressure. Chromatography of the residue using ether: light petroleum (6 : 100 : 0) as eluent gave the title compound 14 (1.69 g, 90%) as a pale yellow oil (Found: M$^{+}$H, 354.2062. C$_{22}$H$_{28}$NO$_3$ requires M, 354.2064); ν_{max} 3073, 1641, 1596, 1494, 1478, 1296, 1254, 1218, 1113 and 773 cm$^{-1}$; δ_{H} (300 MHz, CDCl$_3$) 7.68 and 7.38 (each 1 H, dd, J 7.5, 1.5, ArH), 7.32 (1 H, t, J 7.5, ArH), 7.03 (1 H, t, J 8.5, ArH), 6.61 (2 H, d, J 8.5, ArH), 5.97 (1 H, ddt, J 17, 10, 6, 2-H), 5.33 (1 H, m, 2''-H), 5.22 (1 H, dq, J 17, 1.5, 3-H), 5.13 (1 H, dq, J 10, 1.7, 3'-H'), 5.05 and 4.93 (each 1 H, d, J 11, ArHCHO), 4.85 (1 H, m, 2''-H'), 3.85 (6 H, s, 2 x OCH$_3$), 3.83 and 3.75 (each 1 H, d, J 13, ArCH$_2$N), 3.29 (2 H, dt, J 6, 1.5, 1-H$_2$), 2.11 (3 H, t, J 1.5, 1''-CH$_3$) and 1.70 (1 H, br. s, NH); δ_{C} (75 MHz, CDCl$_3$) 154.21, 143.54, 142.33, 137.58, 137.21, 136.64, 135.27, 128.47, 128.21, 127.17, 123.99, 116.28, 116.12, 105.66, 72.51, 56.34, 52.05, 50.89 and 25.52; m/z (Cl) 354 (M$^{+}$+1, 100%).

N-[3-(2,6-Dimethoxyphenoxy)methyl]-2-(propen-2-yl)phenylmethyl]-N-prop-2-enyl 2-nitrobenzene sulfonamide 4
2-Nitrobenzene sulfonyl chloride (1.19 g, 5.38 mmol) was added to the amine 14 (1.58 g, 4.49 mmol), triethylamine (0.94 cm3, 6.73 mmol) and 4-dimethylaminopyridine (11 mg) in dichloromethane (56 cm3) and the reaction stirred at room temperature for 16 h. Water (50 cm3) was added and the aqueous phase extracted with ether (3 x 50 cm3). The organic extracts were washed with brine, dried (MgSO$_4$) and concentrated under reduced pressure. Chromatography of the residue using ether : light petroleum (1 : 1) as eluent gave the title compound 4 (2.21 g, 92%) as a pale yellow oil (Found: M$^+$Na, 561.1666. C$_{28}$H$_{30}$N$_2$O$_7$SNa requires M, 561.1666); ν_{\max} 3078, 1642, 1596, 1545, 1493, 1478, 1438, 1372, 1354, 1296, 1254, 1164, 1112, 906, 774 and 735 cm$^{-1}$; δH (300 MHz, CDCl$_3$) 8.05 (1 H, dt, J 7, 1.5, ArH), 7.75 – 7.64 (4 H, m, ArH), 7.04 (1 H, t, J 8.5, ArH), 6.61 (2 H, d, J 8.5, ArH), 5.62 (1 H, ddt, J 17, 10.5, 6.5, 2-H), 5.31 (1 H, m, 1"-H), 5.12 (2 H, m, 3-H$_2$), 5.04 and 4.89 (each 1 H, d, J 11, ArHCH), 4.82 (1 H, m, 1"-H'), 4.64 (2 H, s, ArCH$_2$), 3.97 (2 H, d, J 6, 1-H$_2$), 3.85 (6 H, s, 2 x OCH$_3$) and 2.05 (3 H, t, J 1.5, 2"-CH$_3$); δC (75 MHz, CDCl$_3$) 154.13, 148.09, 142.33, 142.15, 137.37, 135.53, 134.36, 133.74, 132.37, 132.05, 131.85, 131.36, 128.82, 127.46, 126.75, 124.43, 124.10, 119.60, 117.03, 105.55, 72.24, 56.30, 49.80, 48.23 and 25.07; m/z (ES) 561 (M$^+$+23, 100%).

References and notes