An Efficient Synthesis of Triazolo-carbohydrate Mimetics and Their Conformation Analysis

Hikaru Yanai, Shun Obara and Takeo Taguchi*
School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
E-mail: taguchi@ps.toyaku.ac.jp

Supporting Information

Table of contents

1. Preparation of triazolo-mannose mimic 6b p. S2
2. Preparation of triazolo-galactose mimic 6c p. S3
4. Preparation of triazolo-altrose mimic ent-5c p. S7
5. 1H and 13C NMR spectra of 2a, 3a, 4a, 5a and 6a p. S9
6. 1H and 13C NMR spectra of 7a, 8a and 9a p. S16
7. 1H and 13C NMR spectra of 2b, 3b, 4b, 5b and 6b p. S20
8. 1H and 13C NMR spectra of 2c, 3c, 4c, 5c and 6c p. S27
9. 1H and 13C NMR spectra of 7c, 8c and 9c p. S34
10. 1H and 13C NMR spectra of 7b, 8b and 9b p. S38
References p. S42
1. Preparation of triazolo-mannose mimic 6b

(2S,3S,4R)-2,3,4-Tri(benzyloxy)-1,1-dimethoxyhex-5-ene (2b). According to the synthetic procedure for 2a, 1,1-dimethoxyhex-5-ene derivative 2b was prepared in 100% yield (6.29 g, 13.6 mmol) by the reaction of (2S,3S,4R)-2,3,4-tribenzyloxyhex-5-enal 1b (5.7 g, 13.6 mmol), 1-pTsOH·H2O (30 mg) and HCl(OMe)3 (35 mL). Colorless oil.

δ(CDCl3) = 3.42 (3H, s), 3.87-3.89 (1H, m), 3.94 (1H, dd, J = 7.5, 5.6 Hz), 4.15 (1H, dd, J = 11.5 Hz), 4.69 (1H, d, J = 11.5 Hz), 4.73 (1H, d, J = 11.5 Hz), 4.75 (1H, d, J = 11.5 Hz), 5.25 (1H, dd, J = 10.3, 1.5 Hz), 5.33 (1H, dd, J = 17.3, 1.5 Hz), 5.83 (1H, ddd, J = 17.3, 10.3, 7.5 Hz), 7.20-7.35 (15H, m); 13C NMR (100 MHz, CDCl3) δ 55.8, 73.1, 73.2, 127.5, 127.8, 127.8, 127.9, 127.9, 128.1, 128.2, 128.2, 136.0, 138.6, 138.7, 138.9. MS (ESI-TOF) m/z 485 [M+Na]+. HRMS calcd for C29H34NaO5 [M+Na]+, 485.2304; found, 485.2324. Anal. Caled for C29H34O5: C, 75.30; H, 7.41. Found: C, 75.37; H, 7.47.

(2S,3R,4S)-Tri(benzyloxy)-5,5-dimethoxypentanal (3b). According to the synthetic procedure for 3a, 5,5-dimethoxypentanal derivative 3b was prepared in 86% yield (4.39 g, 9.46 mmol) by the reaction of 2b (5.1 g, 11 mmol), OsO4 (0.11 M in H2O, 4.5 mL, 0.5 mmol), NMO (3.8 g, 33 mmol) and NaIO4 (5 g) in a mixture of acetone (200 mL), H2O (50 mL) and tert-butyl alcohol (6.5 mL). Colorless oil.

δ(CDCl3) = 3.37 (3H, s), 3.44 (3H, s), 3.77-3.82 (1H, m), 4.03-4.05 (1H, m), 4.09-4.13 (1H, m), 4.53 (1H, d, J = 11.5 Hz), 4.81 (1H, d, J = 11.5 Hz), 4.95 (1H, d, J = 11.5 Hz), 4.98 (1H, d, J = 11.5 Hz), 7.25-7.36 (15H, m); 13C NMR (100 MHz, CDCl3) δ 55.2, 56.2, 70.6, 73.7, 74.7, 78.9, 81.0, 82.6, 105.4, 118.6, 127.4, 127.8, 127.8, 127.9, 128.1, 128.2, 128.2, 136.0, 138.6, 138.7, 138.9. MS (ESI-TOF) m/z 487 [M+Na]+; HRMS calcd for C28H32NaO6 [M+Na]+, 487.2097; found, 487.2082.

(2S,3S,4R)-2,3,4-Tri(benzyloxy)-1,1-dimethoxyhex-5-ene (4b). According to the synthetic procedure for 4a, 1,1-dimethoxyhex-5-ene derivative 4b was prepared in 52% yield (1.23 g, 2.72 mmol) by the reaction of 3b (2.3 g, 13.5 mmol), Ohira-Bestmann reagent (2.88 g, 15 mmol) and K2CO3 (2.3 g, 13.5 mmol) in MeOH (400 mL). Colorless oil.

δ(CDCl3) = 3.34 (3H, s), 3.39 (3H, s), 3.87-3.91 (1H, m), 3.94 (1H, dd, J = 5.6, 4.9 Hz), 4.49-4.58 (3H, m), 4.63 (1H, d, J = 4.9 Hz), 4.76 (1H, d, J = 11.4 Hz), 4.79 (1H, d, J = 11.1 Hz), 4.87 (1H, d, J = 11.7 Hz), 4.98 (1H, d, J = 11.4 Hz), 7.25-7.42 (15H, m); 13C NMR (100 MHz, CDCl3) δ 55.1, 55.8, 73.1, 73.2, 74.3, 79.1, 79.5, 83.0, 105.0, 127.5, 127.8, 127.8, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 137.3, 137.7, 138.2, 201.1; MS (ESI-TOF) m/z 487 [M+Na]+; HRMS calcd for C29H34NaO6 [M+Na]+, 487.2097; found, 487.2082.

(4R,5S,6S,7R)-4,5,6-Tri(benzyloxy)-7-methoxy-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine (5b-α) and (4R,5S,6S,7S)-4,5,6-tri(benzyloxy)-7-methoxy-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine (5b-β).

According to the synthetic procedure for 5a, these compounds were prepared in 91% yield (5b-α 88.0 mg, 0.187 mmol, 43% yield; 5a-β 98.2 mg, 0.208 mmol, 48% yield) by the reaction of 4b (200 mg, 0.43 mmol) and TMSN3 (260 μL, 2.2 mmol) in the presence of In(OTf)3 (12.5 mg, 22 μmol) in 1,2-dichloroethane (6.0 mL). 5b-α as a less polar isomer. Colorless oil.

δ(CHCl3) = 2.55 (1H, s); 1H NMR (400 MHz, CHCl3) δ 2.55 (1H, d, J = 2.1 Hz), 3.39 (3H, t), 3.42 (3H, s), 3.87-3.89 (1H, m), 3.94 (1H, dd, J = 5.6, 4.9 Hz), 4.49-4.58 (3H, m), 4.63 (1H, d, J = 4.9 Hz), 4.76 (1H, d, J = 11.4 Hz), 4.79 (1H, d, J = 11.1 Hz), 4.87 (1H, d, J = 11.7 Hz), 4.98 (1H, d, J = 11.4 Hz), 7.25-7.42 (15H, m); 13C NMR (100 MHz, CDCl3) δ 55.1, 55.6, 69.4, 70.9, 73.6, 74.8, 77.3, 78.7, 81.1, 81.6, 105.0, 127.4, 127.6, 127.9, 127.9, 128.1, 128.2, 128.3, 128.4, 137.7, 137.8, 138.6; MS (ESI-TOF) m/z 483 [M+Na]+; HRMS calcd for C29H34NaO6 [M+Na]+, 483.2147; found, 483.2135.

- S2 -
derivative (1H, dd, J = 3.4, 2.1 Hz), 4.28 (1H, dd, J = 7.5, 2.1 Hz), 4.64-4.75 (4H, m), 4.78 (1H, d, J = 12.0 Hz), 4.79 (1H, d, J = 12.0 Hz), 4.96 (1H, d, J = 7.5 Hz), 5.58 (1H, d, J = 3.4 Hz), 7.26-7.41 (15H, m), 7.57 (1H, s); 13C NMR (100 MHz, CDCl3) δ 58.4, 71.5, 72.9, 73.3, 73.4, 76.1, 81.7, 86.5, 127.8, 127.9, 127.9, 128.0, 128.1, 128.5, 128.6, 132.2, 134.3, 137.2, 137.6, 137.7; MS (ESI-TOF) m/z 472 [(M+H)+]; HRMS calcd for C28H30N3O4 [M+Na]+, 472.2236; found, 472.2264.

(4R,5S,6S,7R)-4,5,6,7-Trihydroxy-7-methoxy-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine (6b-α). According to the synthetic procedure for 6a-α, triol 6b-α was obtained in 88% yield (76.1 mg, 0.379 mmol) by the debenzylation reaction of 5b-α (200 mg, 0.43 mmol) in the presence of Pd(OH)2 on carbon (20 w/w%, 238 mg) in MeOH (5.0 mL) under H2 atmosphere (1 atm). Colorless oil.

(4R,5S,6S,7S)-4,5,6,7-Trihydroxy-7-methoxy-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine (6b-β). According to the synthetic procedure for 6a-α, triol 6b-β was obtained in 79% yield (60.5 mg, 0.305 mmol) by the debenzylation reaction of 5b-β (180 mg, 0.39 mmol) in the presence of Pd(OH)2 on carbon (20 w/w%, 218 mg) in MeOH (5.0 mL) under H2 atmosphere (1 atm). Colorless oil.

2. Preparation of triazolo-galactose mimic 6c

(2R,3S,4S)-2,3,4-Tri(benzyloxy)-1,1-dimethoxyhex-5-ene (2c). According to the synthetic procedure for 2a, 1,1-dimethoxyhex-5-ene derivative 2c was prepared in 91% yield (1.26 g, 2.72 mmol) by the reaction of (2R,3S,4S)-2,3,4-tri(benzyloxy)hex-5-enal 1c (1.3 g, 3.0 mmol), pTsOH·H2O (43 mg) and HC(O)Me3 (7 mL). Colorless oil. [α]D25 (c 1.00, CHCl3) +18.1; IR (neat) ν 3030, 2928, 1454, 1094, 734, 697 cm⁻¹; 1H NMR (400 MHz, CDCl3) δ 2.72 (3H, s), 3.43 (3H, s), 3.73 (1H, dd, J = 7.7, 2.6 Hz), 3.80 (1H, dd, J = 7.1, 2.6 Hz), 4.09 (1H, t, J = 7.7 Hz), 4.12 (1H, d, J = 11.5 Hz), 4.47-4.56 (4H, m), 4.69 (1H, d, J = 11.3 Hz), 4.78 (1H, d, J = 11.5 Hz), 5.34 (1H, brd, J = 10.2 Hz), 5.41 (1H, brd, J = 17.5 Hz), 5.90 (1H, ddd, J = 17.5, 10.2, 7.7 Hz), 7.17-7.34 (15H, m); 13C NMR (100 MHz, CDCl3) δ 35.9, 56.2, 69.9, 74.3, 74.4, 78.7, 79.8, 81.0, 105.6, 119.3, 127.3, 127.4, 127.5, 127.9, 128.0, 128.1, 128.2, 136.5, 138.5, 138.6, 138.9; MS (ESI-TOF) m/z 485 [(M+Na)+]; HRMS calcd for C39H34NaO5 [M+Na]+, 485.2304; found, 485.2286.

(2R,3S,4R)-Tri(benzyloxy)-5,5-dimethoxypentanal (3e). According to the synthetic procedure for 3a, 5,5-dimethoxypentanal derivative 3e was prepared in 89% yield (1.03 g, 2.22 mmol) by the reaction of 2c (1.2 g, 2.5 mmol), OsO4 (0.11 M in H2O, 1.2 mL,
0.13 mmol), NMO (0.5 g, 4.5 mmol) and NaO₄ (3 g) in a mixture of acetone (40 mL), H₂O (10 mL) and tert-butyl alcohol (3 mL). Colorless oil. [α]D²⁵ (c 1.00, CHCl₃) +9.10; [α]D (c 1.00, CHCl₃) +9.10; 1H NMR (400 MHz, CDCl₃) δ 3.28 (3H, s), 3.42 (3H, s), 3.66 (1H, dd, J = 6.3, 3.3 Hz), 3.98-4.02 (2H, m), 4.27 (1H, d, J = 11.7 Hz), 4.45 (1H, d, J = 6.3 Hz), 4.51 (1H, d, J = 11.4 Hz), 4.55 (1H, d, J = 11.3 Hz), 4.57 (1H, d, J = 11.7 Hz), 4.63 (1H, d, J = 11.3 Hz), 4.77 (1H, d, J = 11.4 Hz), 7.19-7.30 (15H, m), 9.64 (1H, d, J = 1.4 Hz); 13C NMR (100 MHz, CDCl₃) δ 54.7, 56.3, 72.3, 74.1, 74.3, 78.8, 79.6, 83.6, 105.5, 127.7, 127.7, 128.1, 128.2, 128.2, 128.3, 137.3, 137.8, 138.1, 201.2; MS (ESI-TOF) m/z 487 [M+Na]⁺; HRMS calcd for C₂₉H₃₂NaO₅ [M+Na]⁺, 487.2097; found: 487.2077.

(2R,3S,4S)-2,3,4-Tri(benzyloxy)-1,1-dimethoxyhex-5-yne (4c). According to the synthetic procedure for 4a, 1,1-dimethoxyhex-5-yne derivative 4c was prepared in 68% yield (0.69 g, 1.50 mmol) by the reaction of 3c (1.0 g, 2.2 mmol), Ohira-Bestmann reagent (3.6 g, 19 mmol) and K₂CO₃ (3.0 g, 22 mmol) in MeOH (230 mL). Colorless oil. [α]D²⁵ (c 1.00, CHCl₃) +52.5; 1H NMR (400 MHz, CDCl₃) δ 2.52 (1H, d, J = 2.0 Hz), 3.29 (3H, s), 3.45 (3H, s), 3.76 (1H, dd, J = 7.0, 2.5 Hz), 3.92 (1H, dd, J = 7.9, 2.5 Hz), 4.28 (1H, d, J = 11.4 Hz), 4.43 (1H, dd, J = 7.9, 2.0 Hz), 4.47 (1H, d, J = 11.5 Hz), 4.51 (1H, d, J = 7.0 Hz), 4.66 (1H, d, J = 11.2 Hz), 4.78 (1H, d, J = 11.5 Hz), 4.80 (1H, d, J = 11.4 Hz), 5.01 (1H, d, J = 11.2 Hz), 7.18-7.35 (13H, m), 7.40 (2H, d, J = 7.5 Hz). 13C NMR (100 MHz, CDCl₃) δ 53.9, 56.3, 68.6, 70.3, 74.4, 74.9, 75.2, 75.8, 80.3, 81.8, 105.3, 127.4, 127.5, 127.6, 127.9, 127.9, 128.1, 128.1, 128.3, 137.6, 138.5, 138.7; MS (ESI-TOF) m/z 483 [M+Na]⁺; HRMS calcd for C₂₉H₃₂NaO₅ [M+Na]⁺, 483.2147; found, 483.2122. Anal. Caled for C₂₉H₃₂O₅: C, 75.63; H, 7.00. Found: C, 75.49; H, 7.00.

(4S,5S,6R,7R)-4,5,6,7-tetrahydro-1,2,3-triazolo[1,5-a]pyridine (5c-α) and (4S,5S,6R,7S)-4,5,6,7-tetrahydro-1,2,3-triazolo[1,5-a]pyridine (5c-β).

According to the synthetic procedure for 5a, these compounds were prepared in 90% yield (5c-α 30.2 mg, 0.064 mmol, 32% yield; 5c-β 54.7 mg, 0.116 mmol, 58% yield) by the reaction of 4c (92 mg, 0.20 mmol) and TMSN₃ (120 μL, 1.0 mmol) in the presence of In(OOT)₃ (5.6 mg, 10 μmol) in 1,2-dichloroethane (2.8 mL). 5c-α as a less polar isomer. Colorless oil. [α]D²⁵ (c 1.01, CHCl₃) +35.4; 1H NMR (400 MHz, CDCl₃) δ 3.65 (3H, s), 4.26 (1H, dd, J = 9.6, 3.8 Hz), 4.44 (1H, dd, J = 9.6, 3.6 Hz), 4.62 (1H, d, J = 12.2 Hz), 4.70 (1H, d, J = 12.2 Hz), 4.74 (1H, d, J = 11.8 Hz), 4.84 (1H, d, J = 3.8 Hz), 4.86 (1H, d, J = 12.0 Hz), 4.89 (1H, d, J = 11.8 Hz), 4.96 (1H, d, J = 12.0 Hz), 5.61 (1H, d, J = 3.6 Hz), 7.30-7.44 (15H, m), 7.56 (1H, s); 13C NMR (100 MHz, CDCl₃) δ 59.0, 66.7, 71.7, 73.7, 74.2, 74.7, 74.9, 86.4, 127.8, 127.8, 128.0, 128.1, 128.1, 128.4, 128.5, 128.3, 123.2, 137.1, 137.7, 138.0; MS (ESI-TOF) m/z 472 [M+H]⁺; HRMS calcd for C₂₈H₂₃N₃O₄ [M+H]⁺, 472.2236; found, 472.2347. 5c-β as a more polar isomer. White amorphous solid. Mp. 56.0-62.0 °C; [α]D²⁵ (c 1.00, CHCl₃) +51.7; IR (neat) ν 3031, 2929, 1454, 1191, 1118, 740, 698 cm⁻¹; 1H NMR (400 MHz, CDCl₃) δ 3.69 (1H, dd, J = 9.2, 3.1 Hz), 3.79 (3H, s), 4.51 (1H, d, J = 12.5 Hz), 4.58 (1H, dd, J = 9.2, 4.6 Hz), 4.67 (1H, d, J = 12.0 Hz), 4.71 (1H, d, J = 12.5 Hz), 4.75 (1H, d, J = 3.1 Hz), 4.78 (1H, d, J = 3.1 Hz), 4.89 (1H, d, J = 11.3 Hz), 4.96 (1H, d, J = 11.3 Hz), 5.56 (1H, d, J = 4.6 Hz), 7.30-7.43 (15H, m), 7.57 (1H, s); 13C NMR (100.6 MHz, CDCl₃) δ 59.1, 65.1, 70.8, 72.6, 74.9, 77.9, 79.4, 90.9, 127.7, 127.8, 127.8, 127.9, 127.9, 128.0, 128.3, 128.4, 131.9, 131.9, 137.0, 137.5, 137.7; MS (ESI-TOF) m/z 472 [M+H]⁺; HRMS calcd for C₂₇H₂₃N₃O₄ [M+H]⁺, 472.2236; found, 472.2232. Anal. Caled for C₂₉H₂₃N₃O₄: C, 71.32; H, 6.20; N, 8.91. Found: C, 71.01; H, 6.20; N, 8.99.

(4S,5S,6R,7R)-4,5,6-Trihydroxy-7-methoxy-4,5,6,7-tetrahydro-1,2,3-triazolo[1,5-a]pyridine (6c-α). According to the synthetic - S4 -
supplementary material for Organic & Biomolecular Chemistry

This journal is (c) The Royal Society of Chemistry 2008

128.2, 128.3, 136.4, 138.6, 138.6, 139.0; MS (ESI-TOF) 83.7, 127.7, 127.8, 127.8, 127.9, 128.0, 128.1, 128.3, 128.3, 128.4, 137.4, 137.8, 138.2, 201.6; MS (ESI-TOF)

9.1 mL, 1.0 mmol), NMO (3.0 g, 16.4 mmol) in a mixture of acetone (120 mL), H2O (30 mL) and

tert 3. Preparation of triazolo-gulose mimic ent-5b tert-Butyl(dimethyl)((2S,3S,4S)-2,3,4-tri(benzyloxy)hex-5-enyl)oxy]silane (7e). According to the synthetic procedure for 7a, TBS ether 7c was prepared in 96% yield (5.53 g, 10.4 mmol) by the reaction of (2S,3S,4S)-2,3,4-tri(benzyloxy)hex-5-en-1-ol (4.5 g, 11 mmol),3 which was prepared by NaBH4 reduction of 1b, imidazole (1.1 g, 16 mmol) and tert-butyl/chlorodimethylsilane (2.0 g, 13 mmol) in DMF (50 mL). Colorless oil. [α]D 25 (c 1.00, CHCl3) +14.8; IR (neat) ν 3358, 2927, 1456, 1254, 1115, 1056, 838 cm−1; 1H NMR (400 MHz, CDCl3) δ 3.70-3.75 (1H, m), 4.04-4.09 (1H, m), 4.19 (1H, d, J = 11.7 Hz), 4.51-4.57 (3H, m), 4.59 (1H, d, J = 11.8 Hz), 4.67 (1H, d, J = 11.3 Hz), 5.32 (1H, brd, J = 17.5 Hz), 5.36 (1H, brd, J = 10.2 Hz), 5.92 (1H, dd, J = 17.5, 10.2, 7.7 Hz), 7.19-7.30 (15H, m); 13C NMR (100 MHz, CDCl3) δ -5.4, -5.4, 18.2, 25.9, 62.9, 70.1, 73.5, 74.5, 79.6, 80.1, 80.8, 119.2, 127.4, 127.4, 127.5, 127.6, 128.0, 128.1, 128.2, 128.3, 136.4, 138.6, 138.6, 139.0; MS (ESI-TOF) m/z 555 [M+Na]+; HRMS calcd for C35H33NaO5Si [M+H]+, 559.2597; found, 555.2863.

(2R,3R,4S)-2,3,4-Tri(benzyloxy)-5-[(tert-butyl(dimethyl)silyl)oxy]pentanal (8c). According to the synthetic procedure for 8a, pentanal derivative 8c was prepared in 84% yield (4.22 g, 7.90 mmol) by the reaction of 7e (5.0 g, 9.4 mmol), OsO4 (0.11 M in H2O, 9.1 mL, 1.0 mmol), NMO (3.0 g, 16.4 mmol) in a mixture of acetonitrile (120 mL), H2O (30 mL) and tert-butyl alcohol (9 mL) and following treatment of reaction mixture by Na2S2O5 (5 g). Colorless oil. [α]D 25 (c 0.20, CHCl3, +12.0; IR (neat) ν 3031, 2928, 2856, 1733, 1455, 1254, 1092, 837, 697 cm−1; 1H NMR (400 MHz, CDCl3) δ 0.03 (3H, s), 0.04 (3H, s), 0.90 (9H, s), 3.70-3.75 (1H, m), 3.82-3.85 (2H, m), 4.01 (1H, m), 4.11 (1H, dd, J = 3.8, 1.4 Hz), 4.46 (1H, d, J = 11.8 Hz), 4.55 (1H, d, J = 11.9 Hz), 4.59-4.69 (4H, m), 7.26-7.38 (15H, m), 9.70 (1H, d, J = 1.4 Hz); 13C NMR (100 MHz, CDCl3) δ −5.4, −5.4, 18.2, 25.9, 62.9, 72.7, 73.2, 73.7, 79.8, 80.0, 83.7, 127.7, 127.8, 127.8, 127.9, 128.0, 128.1, 128.3, 128.3, 128.4, 137.4, 137.8, 138.2, 201.6; MS (ESI-TOF) m/z 557 [M+Na]+; HRMS calcd for C35H33NaO5Si [M+Na]+, 557.2699; found, 557.2689.

- S5 -
Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is (c) The Royal Society of Chemistry 2008

1,3,5-Tri(benzyloxy)-5,5-dimethoxypentanal derivative (2a). According to the synthetic procedure for 2a, 1,3,5-tri(benzyloxy)-5,5-dimethoxypentanal derivative 2a was prepared in 88% yield (2.48 g, 5.31 mmol) by the reaction of tert-butyl(dimethyl)[(2S,3R,4R)-2,3,4-tri(benzyloxy)-5,5-dimethoxypentyl]oxy]silane (3.5 g, 6.0 mmol) and TBAF (1.0 M in THF, 12 mL, 12 mmol) in THF (5 mL). Colorless oil. [α]D²⁵ (c 0.21, CHCl₃) +16.7; IR (neat) ν 3459, 3030, 2928, 2856, 1454, 1207, 1072, 737, 698 cm⁻¹; 1H NMR (400 MHz, CDCl₃) δ 2.45 (1H, brs), 3.33 (3H, s), 3.41 (3H, s), 3.67-3.74 (4H, m), 3.88 (1H, dd, J = 5.7, 3.3 Hz), 4.53-4.69 (6H, m), 4.76 (1H, d, J = 11.5 Hz), 7.21-7.32 (15H, m); 13C NMR (100 MHz, CDCl₃) δ 55.6, 55.8, 61.4, 72.6, 73.7, 74.2, 79.7, 79.9, 105.1, 127.5, 127.5, 127.6, 127.8, 127.9, 129.7, 129.8, 132.8, 138.3, 138.4, 138.5; MS (ESI-TOF) m/z 489 [M+Na]⁺; HRMS calcd for C₂₃H₃₄NaO₆)C₂₃H₃₄O₆Si [M+Na]⁺, 489.2255; found, 489.2255. Anal. Calcd for C₂₃H₃₄O₆Si: C, 72.08; H, 7.35. Found: C, 72.08; H, 7.35. Found: C, 71.97; H, 7.37.

1,3,5-Tri(benzyloxy)-5,5-dimethoxypentanal-1-ol derivative (2c). The physical data of 2c was obtained in 89% yield (3.87 g, 6.65 mmol) by the reaction of 8c (4.0 g, 7.5 mmol) and HC(OOMe) (15 mL) in the presence of pTsOH·H₂O (50 mg). Colorless oil. [α]D²⁵ (c 1.03, CHCl₃) +11.7; IR (neat) ν 3030, 2928, 2856, 1455, 1254, 836, 697 cm⁻¹; 1H NMR (400 MHz, CDCl₃) δ 0.04 (6H, s), 0.90 (9H, s), 3.41 (3H, s), 3.47 (3H, s), 3.75-3.83 (4H, m), 3.92-3.95 (1H, m), 4.59 (1H, d, J = 11.6 Hz), 4.61 (1H, d, J = 4.9 Hz), 4.61 (1H, d, J = 11.8 Hz), 4.67 (1H, d, J = 11.8 Hz), 4.70 (1H, d, J = 11.5 Hz), 4.73 (1H, d, J = 11.5 Hz), 4.84 (1H, d, J = 11.6 Hz), 7.26-7.36 (15H, m); 13C NMR (100 MHz, CDCl₃) δ 74.2, 79.7, 79.9, 105.1, 127.4, 127.6, 127.9, 128.1, 128.2, 138.9, 139.1; MS (ESI-TOF) m/z 603 [M+Na]⁺; HRMS calcd for C₃₄H₄₈NaO₆Si [M+Na]⁺, 603.3118; found, 603.3127. Anal. Calcd for C₃₄H₄₈NaO₆Si: C, 70.31; H, 8.33. Found: C, 70.47; H, 8.29.

4,5,6-Tri(benzyloxy)-7-methoxy-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine (4a). According to the synthetic procedure for 4a, 4,5,6-tri(benzyloxy)-7-methoxy-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine (ent-4a) was prepared from 4,5,6-tri(benzyloxy)-7-methoxy-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine (ent-3a) and TMDS (120 μL, 1.0 mmol) in the presence of In(OTf)₃ (5.6 mg, 10 μmol) in 1,2-dichloroethane (3.0 mL). The physical data of 4a were coincident with those of 4a, except for specific optical rotation. [α]D²⁵ (c 0.21, CHCl₃) +29.8.

4,5,6-Tri(benzyloxy)-7-methoxy-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine (4b). According to the synthetic procedure for 4b, 4,5,6-tri(benzyloxy)-7-methoxy-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine (ent-4b) was prepared from ent-3b under the same conditions in a case of 4b. The physical data of 4b were coincident with those of 4b, except for specific optical rotation. [α]D²⁵ (c 0.99, CHCl₃) +52.7.

5,5-Dimethoxypentanal derivative (2d). According to the synthetic procedure for 2d, these compounds were prepared in 86% yield (ent-5b-α, 45.2 mg, 95 μmol, 48% yield; ent-5b-β 36.0 mg, 76 μmol, 38% yield) by the reaction of ent-5b (92.1 mg, 0.20 mmol) and TMSN₃ (120 μL, 1.0 mmol) in the presence of In(OTf)₃ (5.6 mg, 10 μmol) in 1,2-dichloroethane (3.0 mL). The physical data of ent-5b-α were coincident with those of 5b-α, except for specific optical rotation. [α]D²⁵ (c 0.21, CHCl₃) +23.5. The physical data of ent-5b-β were also coincident with those of 5b-β, except for specific optical rotation. [α]D²⁵ (c 1.00, CHCl₃) +74.5.
4. Preparation of triazolo-altrose mimic ent-5c

tert-Butyl(dimethyl)[({2R,3S,4R}-2,3,4-tri(benzaldehyde)-hex-5-en-1-ol)(xy)oxy]silane (7b). According to the synthetic procedure for 7a, TBS ether 7b was prepared in 89% yield (3.98 g, 7.49 mmol) by the reaction of (2R,3S,4R)-2,3,4-tri(benzaldehyde)-hex-5-en-1-ol (3.5 g, 8.4 mmol), which was prepared by NaBH₄ reduction of 1b, imidazole (743 mg, 11 mmol) and tert-butylchloromethylsilane (1.52 g, 10 mmol) in DMF (9.0 mL). Colorless oil. [α]D²⁵ (c 1.00, CHCl₃) = 141; IR (neat) ν 2928, 2856, 1455, 1253, 1093, 836, 734, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.05 (6H, s), 0.91 (9H, s), 3.67-3.72 (1H, m), 3.72-3.79 (1H, m), 3.63 (1H, dd, J = 10.9, 5.3 Hz), 3.96 (1H, dd, J = 10.9, 2.9 Hz), 4.13 (1H, dd, J = 7.7, 4.2 Hz), 4.34 (1H, d, J = 11.9 Hz), 4.40 (1H, d, J = 11.5 Hz), 4.63 (1H, d, J = 11.9 Hz), 4.65 (1H, d, J = 11.5 Hz), 4.70-4.73 (2H, m), 5.27 (1H, brd, J = 10.4 Hz), 5.33 (1H, brd, J = 17.4 Hz), 5.91 (1H, ddd, J = 17.4, 10.4, 7.7 Hz), 7.18-7.36 (15H, m); ¹³C NMR (100 MHz, CDCl₃) δ 84.2, 127.5, 127.7, 127.8, 128.0, 128.1, 128.2, 128.3, 128.4, 137.3, 137.8, 138.1, 202.2; MS (ESI-TOF) m/z 533 [M+H]⁺; HRMS calcd for C₃₂H₄₃O₅Si [M+H]⁺, 535.2880; found, 535.2889.

(2S,3R,4R)-2,3,4-Tri(benzaldehyde)-5-[tert-butyl(dimethyl)silyl]oxy]pentanal (8b). According to the synthetic procedure for 8a, pentanal derivative 8b was prepared in 92% yield (3.49 g, 6.50 mmol) by the reaction of 7b (3.78 g, 7.1 mmol), OsO₄ (0.11 M in H₂O, 6.4 mL, 0.7 mmol), NMO (1.6 g, 14 mmol) in a mixture of acetone (100 mL), H₂O (35 mL) and tert-butyl alcohol (3 mL) and following treatment of reaction mixture by NaIO₄ (15 g). Colorless oil. [α]D²⁵ (c 1.02, CHCl₃) = 34.1; IR (neat) ν 3032, 2952, 2929, 1731, 1455, 1327, 1253, 1096, 1028, 736, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.01 (3H, s), 0.02 (3H, s), 0.88 (9H, s), 3.66-3.74 (1H, m), 3.78 (1H, dd, J = 11.2, 4.2 Hz), 3.95 (1H, dd, J = 11.2, 2.9 Hz), 4.03-4.07 (2H, m), 4.32 (1H, d, J = 11.5 Hz), 4.47 (1H, d, J = 11.8 Hz), 4.52 (1H, d, J = 11.3 Hz), 4.57 (1H, d, J = 11.3 Hz), 4.62 (1H, d, J = 11.8 Hz), 4.64 (1H, d, J = 11.5 Hz), 7.18-7.30 (15H, m), 9.58 (1H, d, J = 1.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 7.3, 5.3, 18.3, 25.9, 61.4, 72.0, 73.2, 74.1, 78.4, 78.9, 84.2, 127.5, 127.7, 127.8, 128.0, 128.1, 128.2, 128.3, 128.4, 137.3, 137.8, 138.1, 202.2; MS (ESI-TOF) m/z 535 [M+H]⁺; HRMS calcd for C₃₃H₄₅O₄Si [M+H]⁺, 537.2980; found, 537.2989.

tert-Butyl(dimethyl)[({2R,3S,4R}-2,3,4-tri(benzaldehyde)-5,5-dimethoxypentenyl]oxy)silane. This compound was obtained in 100% yield (3.48 g, 6.00 mmol) by the reaction of 8b (3.2 g, 6.0 mmol) and HC(OMe)₃ (15 mL) in the presence of pTsOH·H₂O (20 mg). Colorless oil. [α]D²⁵ (c 0.98, CHCl₃) = 720; IR (neat) ν 3031, 2929, 2856, 1454, 1096, 1028, 836, 734, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.02 (3H, s), 0.02 (3H, s), 0.89 (9H, s), 3.28 (3H, s), 3.43 (3H, s), 3.73 (1H, ddd, J = 7.2, 4.8, 2.3 Hz), 3.76-3.82 (2H, m), 3.88 (1H, dd, J = 7.2, 2.6 Hz), 4.01 (1H, dd, J = 11.2, 2.3 Hz), 4.32 (1H, d, J = 11.7 Hz), 4.50 (1H, d, J = 11.6 Hz), 4.53 (1H, d, J = 7.1 Hz), 4.63 (1H, d, J = 11.6 Hz), 4.70 (1H, d, J = 11.7 Hz), 4.72 (1H, d, J = 11.6 Hz), 4.81 (1H, d, J = 11.6 Hz), 7.18-7.35 (15H, m); ¹³C NMR (100 MHz, CDCl₃) δ 7.3, 5.3, 18.3, 25.9, 53.5, 55.9, 62.2, 71.8, 74.2, 74.3, 78.2, 78.8, 79.5, 105.4, 127.2, 127.4, 127.8, 127.9, 128.1, 128.2, 128.2, 138.9, 139.1; MS (ESI-TOF) m/z 603 [M+Na]⁺; HRMS calcd for C₃₄H₄₈NaO₆Si [M+Na]⁺, 603.3118; found, 603.3062.

(2R,3R,4S)-2,3,4-Tri(benzaldehyde)-5,5-dimethoxypent-1-en-1-ol (9b). According to the synthetic procedure for 9a, 5,5-dimethoxypent-1-en-1-ol derivative 9b was prepared in 98% yield (2.74 g, 5.88 mmol) by the reaction of tert-butyl(dimethyl)[({2R,3R,4S}-2,3,4-tri(benzaldehyde)-5,5-dimethoxypentyl]oxy]silane (3.4 g, 6.0 mmol) and TBAF (1.0 M in THF, 12 mL, 12 mmol) in THF (5 mL). Colorless oil. [α]D²⁵ (c 1.00, CHCl₃) = 870; IR (neat) ν 3481, 3031, 2933, 1454, 1092, 1029, 735, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.28 (3H, s), 3.43 (3H, s), 3.65-3.70 (2H, m), 3.74 (1H, brd, J = 12.0 Hz), 3.85 (1H, dd, - S7 -
$J = 12.0, 3.6 \text{ Hz}$, 3.90 (1H, dd, $J = 6.9, 2.9 \text{ Hz}$), 4.29 (1H, d, $J = 11.6 \text{ Hz}$), 4.48 (1H, d, $J = 12.0 \text{ Hz}$), 4.50 (1H, d, $J = 6.7 \text{ Hz}$), 4.51 (1H, d, $J = 12.0 \text{ Hz}$), 4.63 (1H, d, $J = 11.5 \text{ Hz}$), 4.72 (1H, d, $J = 11.5 \text{ Hz}$), 4.81 (1H, d, $J = 11.6 \text{ Hz}$), 7.19-7.34 (15H, m); 13C NMR (100 MHz, CDCl$_3$) δ 54.1, 56.2, 60.2, 71.2, 74.1, 74.6, 78.1, 7.7, 78.9, 105.6, 127.5, 127.6, 127.6, 127.7, 128.0, 128.0, 128.2, 128.3, 128.4, 138.1, 138.4, 138.6; MS (ESI-TOF) m/z 489 [M+Na]$^+$. HRMS calcd for C$_{28}$H$_{34}$NaO$_6$ [M+Na]$^+$, 489.2253; found, 489.2232.

(2S,3R,4S)-2,3,4-Tri(benzyloxy)-5,5-dimethoxypentanal (ent-3c). According to the synthetic procedure for ent-3a, 5,5-dimethoxypentanal derivative ent-3c was prepared in 88% yield (2.20 g, 4.73 mmol) by the reaction of 9b (2.5 g, 5.4 mmol) and DMP (3.3 g, 8.0 mmol) in CH$_2$Cl$_2$ (15 mL). The physical data of ent-3c were coincident with those of 3c, except for specific optical rotation. $[\alpha]_	ext{D}^{25}$ (c 1.00, CHCl$_3$) –8.20.

(2S,3R,4R)-2,3,4-Tri(benzyloxy)-1,1-dimethoxyhex-5-yne (ent-4c). This compound was prepared from ent-3c under the same conditions in a case of 4c. The physical data of ent-4c were coincident with those of 4c, except for specific optical rotation. $[\alpha]_	ext{D}^{25}$ (c 1.01, CHCl$_3$) –54.2.

(4R,5R,6S,7S)-4,5,6-Tri(benzyloxy)-7-methoxy-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine (ent-5c-α) and (4R,5R,6S,7R)-4,5,6-tri(benzyloxy)-7-methoxy-4,5,6,7-tetrahydro[1,2,3]triazolo[1,5-a]pyridine (ent-5c-β). According to the synthetic procedure for 5c, these compounds were prepared in 89% yield (ent-5c-α 85.3 mg, 0.181 mmol, 28% yield; ent-5c-β 187.6 mg, 0.398 mmol, 61% yield) by the reaction of ent-4c (300 mg, 0.65 mmol) and TMSN$_3$ (0.40 mL, 3.3 mmol) in the presence of In(OTf)$_3$ (18.2 mg, 32.5 µmol) in 1,2-dichloroethane (9.0 mL). The physical data of ent-5c-α were coincident with those of 5c-α, excluding specific optical rotation. $[\alpha]_	ext{D}^{25}$ (c 1.01, CHCl$_3$) –36.8. The physical data of ent-5c-β were also coincident with those of 5c-β, except for specific optical rotation. $[\alpha]_	ext{D}^{25}$ (c 0.98, CHCl$_3$) –51.3.
5. 1H and 13C NMR spectra of 2a, 3a, 4a, 5a and 6a
6. 1H and 13C NMR spectra of 7a, 8a and 9a
1H and 13C NMR spectra of 2b, 3b, 4b, 5b and 6b.
Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is (c) The Royal Society of Chemistry 2008

Current Data Parameters
- **NAME:** 3b
- **EXPNO:** 46
- **PROCNR:** 1

2D - Acquisition Parameters
- **DATUM:** 20070724
- **TEM:** 200
- **JLWAVE:** 1.2424
- **Dpitch:** 0.5°
- **SPACING:** 0.1024°
- **VPO:** 0.00001
- **VSP:** 0.00000
- **WDIR:** 0.00000
- **WSP:** 0.00000

2D - Recording parameters
- **T1:** 300.00 MHz
- **T2:** 400.00 MHz

2D - Jmix parameters
- **Jf:** 45.00 Hz
- **Jj:** 90.00 Hz

Current Data Parameters
- **NAME:** 3b
- **EXPNO:** 46
- **PROCNR:** 1

2D - Acquisition Parameters
- **DATUM:** 20070724
- **TEM:** 200
- **JLWAVE:** 1.2424
- **Dpitch:** 0.5°
- **SPACING:** 0.1024°
- **VPO:** 0.00001
- **VSP:** 0.00000
- **WDIR:** 0.00000
- **WSP:** 0.00000

2D - Recording parameters
- **T1:** 300.00 MHz
- **T2:** 400.00 MHz

2D - Jmix parameters
- **Jf:** 45.00 Hz
- **Jj:** 90.00 Hz

Chemical Structure

```
OHC
\Bn\Bn
\OMe\OMe
3b
```

Detailed Annotations

- Chemical shift values and spectral data are not transcribed here.
- Further details are provided in the Supplementary Information section (ESI).
8. 1H and 13C NMR spectra of 2c, 3c, 4c, 5c and 6c

![NMR spectra of 2c, 3c, 4c, 5c, and 6c](image-url)
9. 1H and 13C NMR spectra of 7c, 8c and 9c
Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2008
10. 1H and 13C NMR spectra of 7b, 8b and 9b
References

