Electronic Supplementary Information

Synthesis and DNA interactions of a bis-phenothiazinium photosensitizer

Beth Wilson,a María-José Fernández,b Antonio Lorente* b and Kathryn B. Grant* a

a Department of Chemistry, Georgia State University P.O. Box 4098 Atlanta, Georgia 30302-4098; b Departamento de Química Orgánica, Universidad de Alcalá, 28871-Alcalá de Henares, Madrid, Spain.

antonio.lorente@uah.es, kbgrant@gsu.edu

Contents:

Experimental.
Preparation of phenothiazin-5-ium tetraiodide hydrate (1). S2
Preparation of 3-(dimethylamino)phenothiazin-5-ium triiodide (2). S2

Figures.
Fig. S1. UV-visible spectra of 1 µM of compound 3 and of MB in the presence and absence of CT DNA and 1% SDS. S3
Fig. S2. 1H NMR spectrum of compound 3. S4
Fig. S3. 1H NMR spectrum: aromatic region with integration. S5
Fig. S4. 1H NMR spectrum: aliphatic region with integration. S6
Fig. S5. 13C NMR spectrum of compound 3. S7
Fig. S6. 2D HMQC NMR spectrum of compound 3. S8
Fig. S7. Viscometric measurements of 50 µM bp alternating poly[(dA-dT)]2 and 50 µM bp poly(dA)•poly(dT) with compound 3 and with MB. S9

Table.
Table S1. UV-visible absorbance data at 1 µM of phenothiazine and 38 µM bp of CT DNA. S10

Reference.

S1
Experimentals

Phenothiazin-5-i um tetraiodide hydrate (1). Preparation of known compound 1\(^1\) afforded a dark-blue solid product (1.63 g, 80%), mp 170 \(^\circ\)C (from CHCl\(_3\), decomp.); \(R_f = 0.09\) (CHCl\(_3\)); \(\nu_{\text{max}}\) (film)/cm\(^{-1}\) 2967, 1558, 1467, 1440, 1311, 1233, 1131, 1067, 1023, 841, and 705; \(\delta_H\) (300 MHz; Acetone-\(d_6\); Me\(_4\)Si) 8.01 (2H, m), 7.92 (2H, m), and 7.64 (4H, m); \(\delta_C\) (75 MHz; acetone-\(d_6\); Me\(_4\)Si) 153.6, 130.7, 129.5, 128.6, 125.5, and 123.5; \(m/z\) (LR-ESI) 199.0 (M\(^+\) - C\(_{12}\)H\(_8\)NS requires 198.04).

3-(Dimethylamino)phenothiazin-5-ium triiodide (2). Known compound 2 was prepared by making a minor modification to a published literature procedure.\(^1\) To a solution of phenothiazin-5-ium tetraiodide hydrate (0.400 g, 0.553 mmol) in 20 mL of chloroform was added a 2 M solution of dimethylamine in methanol (0.553 mL, 1.106 mmol) drop-wise over 4 h. The reaction progress was monitored by silica gel TLC (3:7 10% aqueous ammonium acetate/methanol). The resultant precipitate was filtered, washed with chloroform and allowed to air dry. Product 2 (189 mg, 55%) was obtained as a dark-blue solid, mp 144 – 145 \(^\circ\)C (from MeOH); \(R_f = 0.28\) (3:7 10% aqueous ammonium acetate / methanol); (Found: C, 27.1; H, 1.9; N, 4.4; S, 5.2; I, 60.9. C\(_{14}\)H\(_{13}\)N\(_2\)I\(_3\) requires C, 27.0; H, 2.1; N, 4.5; S, 5.15; I, 61.2%); \(\nu_{\text{max}}\) (film)/cm\(^{-1}\) 2800, 1617, 1559, 1489, 1429, 1411, 1252, 1118, 1411, 1078, 887, 835, and 772; \(\delta_H\) (300 MHz; DMSO-\(d_6\); Me\(_4\)Si) 8.22 (1H, dd, \(J = 8.0\ and \ 1.6\), H-9), 8.17 (1H, dd, \(J = 8.0\ and \ 1.6\), H-6), 8.10 (1H, d, \(J = 10\), H-1), 8.04 (1H, dd, \(J = 10\ and \ 2.4\), H-2), 8.00 (1H, d, \(J = 2.4\), H-4), 7.85 (2H, m, H-7, H-8), 3.64 and 3.60 (6H, s, 2 x N(CH\(_3\))\(_2\)); \(\delta_C\) (75 MHz, DMSO-\(d_6\); Me\(_4\)Si) 156.1, 144.1, 139.8, 139.6, 138.0, 134.6, 133.2, 129.8, 126.3, 126.1, 125.8, 109.7, 43.3, and 42.9; \(m/z\) (LR-ESI) 241.1 (M\(^+\) - C\(_{14}\)H\(_{13}\)N\(_2\)S requires 240.08).
Fig. S1 UV-visible spectra recorded at 22 °C in 10 mM sodium phosphate buffer pH 7.0 of: a) 1 µM compound 3 (●, $\lambda_{\text{max}} = 620$ nm) in the presence of 38 µM bp CT DNA (○, $\lambda_{\text{max}} = 680$ nm) or 1% SDS (w/v) (solid line, $\lambda_{\text{max}} = 676$ nm); b) 1 µM MB (□, $\lambda_{\text{max}} = 664$ nm) in the presence of 38 µM bp CT DNA (○, $\lambda_{\text{max}} = 671$ nm) or 1% SDS (w/v) (solid line, $\lambda_{\text{max}} = 661$ nm). Line markers (●,○,□) are placed at every 50th data point. Prior to data acquisition, the samples containing DNA were pre-equilibrated for 12 h in the dark at 22 °C.
Fig. S2 1H NMR spectrum of compound 3: δ_H(300 MHz, 4:6 CDCl$_3$/CD$_3$OD; Me$_4$Si) 7.95 (2H, d, J 9.6, H-1), 7.94 (2H, d, J 9.6, H-9), 7.50-7.46 (4H, m, H-6, H-8), 7.33 (2H, dd, J 9.6 and 2.7, H-2), 7.26 (2H, d, J 2.7, H-4), 4.42 (4H, d, J 13.5, 2 x CH$_2$-α), 3.43 (12H, s, 2 x N(CH$_3$)$_2$), 3.38 (4H, m, overlap with CH$_3$OH, 2 x CH$_2$-α), 2.06 (4H, d, J 11.7, 2 x CH$_2$-β), 1.81 (2H, broad, 2 x CH), and 1.44-1.31 (8H, m, CH$_2$CH$_2$, 2 x CH$_2$-β).
Fig. S3 Aromatic region with integration, enlarged from Fig. S2: $\delta_H = 7.95$ (2H, d, J 9.6, H-1), 7.94 (2H, d, J 9.6, H-9), 7.50-7.46 (4H, m, H-6, H-8), 7.33 (2H, dd, J 9.6 and 2.7, H-2), 7.26 (2H, d, J 2.7, H-4). Note: resonance at 7.43 ppm is a residual solvent peak from CHCl$_3$.

Note: Supp. Material (ESI) for Organic & Biomolecular Chemistry. This journal is (c) The Royal Society of Chemistry 2008.
Fig. S4 Aliphatic region with integration, enlarged from Fig. S2: $\delta_\text{H} = 4.42$ (4H, d, J 13.5, 2 x CH$_2$-α), 3.43 (12H, s, 2 x N(CH$_3$)$_2$), 3.38 (4H, m, overlap with CH$_3$OH, 2 x CH$_2$-α), 2.06 (4H, d, J 11.7, 2 x CH$_2$-β), 1.81 (2H, broad, 2 x CH), and 1.44-1.31 (8H, m, CH$_2$-CH$_2$, 2 x CH$_2$-β).
Fig. S5 13C NMR spectrum of compound 3: δ (75 MHz, 4:6 CDCl$_3$/CD$_3$OD; Me$_4$Si) 154.3 and 153.3 (C-3, C-7), 139.2 and 138.7 (C-1, C-9), 136.4, 135.9, 135.8, and 134.8 (C$_4$a, C$_5$a, C$_9$a and C$_{10}$a), 119.3 and 118.6 (C-2, C-8), 107.1 and 106.4 (C-4, C-6), 49.3 (C-α), 41.6 (NCH$_3$), 35.8 (CH), 33.0 and 32.9 (C-β, CH$_2$-CH$_2$).
Fig. S6 HMQC NMR spectrum of compound 3 in DMSO-d_6 at 25 °C recorded using a Varian Unity Plus 500 MHz instrument. The 1H - 13C correlations in this spectrum were utilized to assign the proton and carbon resonances in the spectra shown in Figs. S2 –S5.
Fig. S7 Viscometric measurements conducted at 25 ± 0.1 °C in 10 mM sodium phosphate buffer pH 7.0 of 50 µM bp alternating poly[(dA-dT)]$_2$ and 50 µM bp poly(dA)•poly(dT) DNA pre-equilibrated for 12 h in the dark at 22 °C with 0.0 to 3 µM of the phenothiazines a) compound 3 and b) MB.

- □: compound 3: alternating poly[(dA-dT)]$_2$ slope = 1.11 R = 0.9518
- ○: compound 3: poly(dA)•poly(dT) slope = 0.22 R = 0.9202
- ■: MB: alternating poly[(dA-dT)]$_2$ slope = 1.18 R = 0.9066
- □: MB: poly(dA)•poly(dT) slope = 0.17 R = 0.7111
Table

Table S1 UV-visible absorbance at 1 μM of phenothiazine

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Compound 3</th>
<th>MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>676</td>
<td>0.0707</td>
<td>0.0424</td>
</tr>
<tr>
<td>700</td>
<td>0.0414</td>
<td>0.0107</td>
</tr>
<tr>
<td>710</td>
<td>0.0204</td>
<td>0.0034</td>
</tr>
</tbody>
</table>

a 1 μM of each phenothiazine was pre-equilibrated with 38 μM bp of CT DNA in 10 mM sodium phosphate buffer pH 7.0 for 12 h at 22 °C.

Reference