Supplementary Material

Metal-Mediated Base Pairing within the Simplified Nucleic Acid GNA

Mark K. Schlegel, Lilu Zhang, Nicholas Pagano, and Eric Meggers

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Strasse, D-35043 Marburg, Germany

Content:

1.) Proton NMR data of compounds

2.) GNA oligonucleotide synthesis and purification
1.) Proton NMR data of compounds
Compound 5 (CDCl₃)
Compound 7 (DMSO-d_6)

ODPC

DMTrO

OH
Compound 1 (CDCl₃)
Compound 13 (CDCl₃)
Compound 14 (CDCl₃)

DMTrO

OH

N

N

N

N
Compound 2 (CDCl$_3$)
2.) GNA oligonucleotide synthesis and purification

GNA oligonucleotides were prepared on an ABI 394 DNA/RNA Synthesizer on a one micromole scale. GNA phosphoramidites (A, T, G, C, 1, 2) were used at a concentration of 100 mM with a standard protocol for 2-cyanoethyl phosphoramidites, except that the coupling was extended to 3 minutes (A, T, G, C), or 8 minutes (1, 2). After the trityl-on synthesis, the resin was incubated with concentrated aqueous ammonia at 55-60 °C for 12 hours and then evaporated. The tritylated oligonucleotides were purified by C_{18}-reversed-phase HPLC (Varian Dynamax 250 × 10 mm, Microsorb 300–10, C_{18}) with aqueous triethylammonium acetate (50 mM TEAA) and acetonitrile as the eluent. The oligonucleotides were then detritylated with 80% acetic acid for 20 min and precipitated with iPrOH after the addition of 3 M sodium acetate. All oligonucleotides were finally purified at 55-60 °C using a Waters XTerra column (MS C18, 4.6 × 50 mm, 2.5 μm) with aqueous TEAA (50 mM) and acetonitrile as the eluent. Purities were confirmed by HPLC as demonstrated with a representative trace in Figure S1. All identities were confirmed by MALDI-TOF MS (Table S1).
Figure S1. HPLC trace of the GNA sequence 3’-AAT ATT ATT ATT TTA-2’. The oligo was eluted with a linear gradient from 3-13% acetonitrile (97-87% TEAA) in 30 minutes. All GNA oligos were determined to be 98-100% pure by HPLC.

Table S1. Extinction coefficients and MALDI-TOF measured masses for all GNA oligonucleotides

<table>
<thead>
<tr>
<th>Sequence (3’→2’)</th>
<th>ε_{260}</th>
<th>Mass (calc)</th>
<th>Mass (measured)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAT ATT ATT ATT TTA</td>
<td>153630</td>
<td>3924</td>
<td>3924</td>
</tr>
<tr>
<td>TAA AAT AAT AAT ATT</td>
<td>171720</td>
<td>3951</td>
<td>3952</td>
</tr>
<tr>
<td>AAT ATT AHT ATT TTA</td>
<td>150606</td>
<td>3923</td>
<td>3925</td>
</tr>
<tr>
<td>TAA AAT AHT AAT ATT</td>
<td>162666</td>
<td>3941</td>
<td>3943</td>
</tr>
<tr>
<td>AAT ATT APT ATT TTA</td>
<td>159660</td>
<td>3994</td>
<td>3997</td>
</tr>
<tr>
<td>TAA AAT APT AAT ATT</td>
<td>171720</td>
<td>4012</td>
<td>4015</td>
</tr>
<tr>
<td>TAA AAT ATT AAT ATT</td>
<td>165690</td>
<td>3942</td>
<td>3941</td>
</tr>
</tbody>
</table>