Figure S1. TEM images of xerogels obtained from organogels of (a) L-1 and (b) L-11 in chlorobenzene: post-stained with 2 wt% of aqueous ammonium molybdate: [L-1] = [L-11] = 1.0 mM.
Figure S2. Hachisako et al.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2009

Figure S2. Concentration dependence of λ_{max} of Et(30) in chlorobenzene: \bigcirc; [Et(30)] = 0.0325 mM, \square; [Et(30)] = 0.075 mM, \diamond; [Et(30)] = 0.15 mM, \times; [Et(30)] = 0.30 mM, Δ; [Et(30)] \sim 1.5 mM (saturated solution).
Figure S3. Schematic representation of intermolecular interactions between Er(30) and lipids L-1 (a) and L-10 (b), respectively, in chlorobenzene.
Figure S4. Temperature dependence of λ_{max} of Et(30) in the presence of lipid aggregates of L-11, L-14, and L-15 in chlorobenzene.
Figure S5. Hachisako et al.

(a) Temperature dependence of \(\lambda_{\text{max}} \) of Et(30) (■) alone and (○) in the presence of lipid aggregates of L-11 in chlorobenzene; (b) Schematic representation of interaction between lipid (L-1, L-7, L-8, L-9, L-11, DL-11, L-14, L-15, or L-16) and Et(30) in chlorobenzene. Bilayer structure is omitted for clarity.
Figure S6. Hachisako et al.

Figure S6. Temperature dependence of λ_{max} of Et(30) in the presence of lipids L-11 and L-16 in chlorobenzene: ○: L-11, □: L-16, [lipid] = 3.0 mM, [Et(30)] = 0.15 mM, [lipid]/[Et(30)] = 20.