Electronic Supplementary Information

Effects of the number and position of the substituents on the *in vitro* photodynamic activities of glucosylated zinc(II) phthalocyanines

Jian-Yong Liu, Pui-Chi Lo, Wing-Ping Fong and Dennis K. P. Ng*
**Fig. S1** HPLC analysis of the purified (a) ZnPc(β-Glu)$_4$ (5) and (b) ZnPc(α-Glu)$_2$ (12). The mobile phase was CH$_3$OH/H$_2$O (4:1 v/v) and CH$_3$OH/H$_2$O (2:3 v/v) respectively. The relatively broad signal for ZnPc(β-Glu)$_4$ (5) can be attributed to the fact that it exists as a mixture of structural isomers.
In all of the following spectra, residual solvent signals are marked with asterisks.

$^1$H NMR and $^{13}$C$_{^1}$H$_1$ NMR spectra of compound 3 in CDCl$_3$
$^1$H NMR and $^1$H-$^1$H COSY spectra of compound 4 in CDCl$_3$ with a trace amount of pyridine-d$_5$
$^1$H NMR spectrum of compound 5 in CDCl$_3$ with a trace amount of pyridine-d$_5$
$^1$H NMR and $^{13}$C\{$^1$H\} NMR spectra of compound 7 in CDCl$_3$ with a trace amount of pyridine-d$_5$
$^1$H-$^1$H COSY spectrum of 7 in CDCl$_3$ with a trace amount of pyridine-d$_5$
$^1$H NMR and $^{13}$C($^1$H) NMR spectra of compound 8 in CDCl$_3$
$^1$H NMR and $^{13}$C{$^1$H} NMR spectra of compound 10 in CDCl$_3$
$^1$H NMR and $^{13}$C($^1$H) NMR spectra of compound 11 in CDCl$_3$ with a trace amount of pyridine-d$_5$
$^{1}H-^{1}H$ COSY spectrum of 11 in CDCl$_3$ with a trace amount of pyridine-d$_5$
$^1$H NMR spectrum of compound 12 in CDCl$_3$ with a trace amount of pyridine-d$_5$
\(^1\text{H NMR and }^{13}\text{C}\{^1\text{H}\} \text{ NMR spectra of compound 15 in CDCl}_3\)
$^1$H NMR and $^{13}$C{$^1$H} NMR spectra of compound 16 in CDCl$_3$
$^1$H NMR and $^{13}$C{$^1$H} NMR spectra of compound 18 in CDCl$_3$
$^1$H NMR and $^{13}$C$[^1$H$]$ NMR spectra of compound 19 in CDCl$_3$
$^1$H NMR and $^{13}$C{$^1$H} NMR spectra of compound 20 in CDCl$_3$ with a trace amount of pyridine-d$_5$. 
$^1$H-$^1$H COSY spectrum of 20 in CDCl₃ with a trace amount of pyridine-d₅