Recognition Properties of Receptors Based on Dimesitylmethane-Derived Core: Di- vs. Monosaccharide Preference

Monika Mazik* and Arno C. Buthe

Institut für Organische Chemie der Technischen Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany

1. 1H and 13C NMR spectra of compound 15.
2. 1H and 13C NMR spectra of compound 16.
3. 1H and 13C NMR spectra of compound 12.
4. 1H and 13C NMR spectra of compound 13.

Page

1. S2
2. S3
3. S5
4. S7
1. 1H and 13C NMR spectra of compound 15.

Figure S1a. 1H NMR spectrum of 15 in CDCl$_3$.

Figure S1b. 13C NMR spectrum of 15 in CDCl$_3$.
2. 1H and 13C NMR spectra of compound 16.

Figure S1c. DEPT spectrum of 15 in CDCl$_3$.

Figure S2a. 1H NMR spectrum of 16 in CDCl$_3$.
Figure S2b. 13C NMR spectrum of 16 in CDCl$_3$.

Figure S2c. DEPT spectrum of 16 in CDCl$_3$.
3. 1H and 13C NMR spectra of compound 12.

Figure S3a. 1H NMR spectrum of 12 in CDCl$_3$.

Current Data Parameters
NAME : bua806-1
EXPNO : 1
PROCNO : 1
*** Acquisition Parameters ***
SOLVENT : CDCl$_3$
Figure S3b. 13C NMR spectrum of 12 in CDCl$_3$.

Figure S3c. DEPT spectrum of 12 in CDCl$_3$.
4. 1H and 13C NMR spectra of compound 13.

Figure S4a. 1H NMR spectrum of 13 in THF-d$_8$.

Figure S4b. 1H NMR spectrum of 1 in CDCl$_3$.
Figure S4b. 1H NMR spectrum of 13 in CDCl$_3$.

Figure S4c. 13C NMR spectrum of 13 in THF-d$_8$.
Figure S4d. DEPT spectrum of 13 in THF-d$_8$.