SUPPORTING INFORMATION

Synthesis of selenium-containing bicyclic β-lactams via alkene metathesis

Dinesh R. Garud, Deepali D. Garud and Mamoru Koketsu

Department of Chemistry, Faculty of Engineering, Gifu University, Gifu-501-1193, Japan. E-mail: ddgarud@yahoo.co.in
Division of Instrumental Analysis, Life Science Research Center, Gifu University, Gifu-501-1193 Japan. Fax: +81-58-293-2619; Tel: +81-58-293-2619; E-mail: koketsu@gifu-u.ac.jp

Experimental Section:

General

All reactions were performed in round-bottom flask fitted with balloon filled with argon, otherwise specified. Transfer of air- and moisture-sensitive liquids was performed via cannula under a positive pressure of argon. TLC analysis was performed on Merck TLC (silica gel 60F254 on glass plate). Evaporation and condensation were carried out in vacuo. The compound 1\(^1\) and 5\(^2\) were prepared according to the literature. Silica gel 60N (spherical, neutral) manufactured by Kanto Chemical Co. Inc. was used for flash column chromatography. DMF and toluene were deoxygenated prior to use. Tetramethylammonium fluoride and methyl hydrazine were purchased from Tokyo Chemical Industry Ltd. Grubbs 1\(^{st}\) gen. catalyst, Grubbs 2\(^{nd}\) gen. catalyst, LHMDS (1.0 M THF solution) and 3-bromo-2-methyl-propene were purchased from Aldrich Chemical Company. Schrock’s catalyst was purchased from Strem Chemicals. 4-Bromo-1-butene was purchased from Alfa Aesar Company. (3\(^R\),4\(^R\))-4-Acetoxy-3-[(3\(^R\))-(tert-butyldimethylsilyloxy)ethyl]-2-azetidinone, allyl bromide and cesium carbonate were purchased from Wako Pure Chemical Industries Ltd. NaH was purchased from Nacalai Tesque Inc.

Melting points were measured by a Yanagimoto micromelting point apparatus (uncorrected). Optical rotation was recorded by Union PM-201 Automatic Digital Polarimeter (Horiba) at 28°C. IR spectra were measured on JASCO FT/IR-410 Fourier Transform Infrared Spectrometer. The \(^1\)H NMR, \(^13\)C NMR spectra or \(^77\)Se NMR spectra were measured on JEOL:JNM ECX-400P, JEOL:JNM ECA-500, JEOL:JNM ECA-600 spectrometers in CDCl\(_3\). Chemical shifts of protons are reported in \(\delta\) values referred to TMS as an internal standard, and the following abbreviations were used as follows: s: singlet, d: doublet, t: triplet, m: multiplet. The \(^77\)Se chemical shifts were expressed in \(\delta\) values deshielded with respect to neat Me\(_2\)Se. \(^1\)\(^J\)(\(^77\)Se-\(^1\)H) values are observed as \(^77\)Se satellites of the \(^1\)H NMR spectra. MS and HRMS were measured on a JEOL JMS-700.

References:

General Preparation of Se-alkene p-methylselenobenzoate (2): To a solution of potassium p-methylselenobenzoate 1 (12.65 mmol) in degassed DMF (50 mL) was added alkyl bromide (18.97 mmol) under an argon atmosphere, and the mixture was stirred for 1 h (TLC; CHCl₃:n-hexane = 1:5). The reaction mixture was filtered through celite and washed with CHCl₃. The combined filtrate and washing were extracted with CHCl₃ and washed with water and brine. The organic layer was dried over Na₂SO₄ and concentrated. The resulted residue was purified with column chromatography on silica gel (CHCl₃:n-hexane = 1:15 → 1:10 → 1:5) to give 2.

The isolated yield and the spectral data for 2a and 2b are as follows:

Se-3- Allyl 4-methylbenzoselenoate (2a). Yield: 87%; IR (neat): 2921, 1682, 1661, 1604, 1203, 1172, 887 cm⁻¹; ¹H NMR (CDCl₃): δ 2.39 (s, 3H), 3.71 (d, J = 8.0 Hz, 2H), 5.05 (d, J = 9.2 Hz, 1H), 5.26 (dd, J = 1.1, 17.2 Hz, 1H), 5.92-6.02 (m, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃): δ 21.7, 27.7, 117.3, 127.3, 129.4, 134.6, 136.4, 144.6, 193.7; ⁷⁷Se NMR (CDCl₃): δ 553.3; HRMS (EI): m/z = 240.0053 calcd. for C₁₁H₁₂OSe, found 240.0042.

Se-3-Butenyl 4-methylbenzoselenoate (2b). Yield: 83%; IR (neat): 2924, 1681, 1661, 1604, 1406, 1202, 1172, 886 cm⁻¹; ¹H NMR (CDCl₃): δ 2.38 (s, 3H), 2.48-2.54 (m, 2H), 3.13 (t, J = 6.9 Hz, 2H), 5.05 (dd, J = 1.7, 10.3 Hz, 1H), 5.10 (dd, J = 1.7, 17.2 Hz, 1H), 5.80-5.90 (m, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃): δ 21.6, 24.4, 34.5, 116.0, 127.2, 129.3, 136.5, 137.2, 144.4, 194.0; ⁷⁷Se NMR (CDCl₃): δ 521.1; HRMS (EI): m/z = 254.0210 calcd. for C₁₂H₁₄OSe, found 254.0197.

Typical procedure for the preparation of 4-alkylseleno-2-azetidinone (3): To stirred solution of selenium catalyst 2 (3.83 mmol), Cs₂CO₃ (3.83 mmol) in dry DMF (5 mL) at r.t. was added methyl hydrazine (3.83 mmol) under argon atmosphere. After stirring at this temperature for 10 minutes, (3R,4R)-4-acetoxy-3-[(R)-(tert-butyldimethylsilyloxy)ethyl]-2-azetidinone (3.48 mmol) was added and stirring continued for additional 30 min. The reaction mixture was extracted with dichloromethane and washed with water. The combined organic extracts were dried (Na₂SO₄) and concentrated in vacuo to afford a residue that was further subjected to flash chromatography (SiO₂: hexane / diethyl ether = 5/1) to afford compound 3.

The isolated yield and the spectral data for 3a-3b are as follows:

3a. Yield: 26%; Mp. 58–59 °C; IR (neat): 2955, 1766, 1723, 1654, 1637, 1374, 1250, 958, 835 cm⁻¹; ¹H NMR (CDCl₃): δ 0.07 (s, 3H), 0.08 (s, 3H), 0.87 (s, 9H), 1.23 (d, J = 6.3 Hz, 3H), 3.24 (s, 1H), 3.28-3.40 (m, 2H), 4.22-4.28 (m, 1H), 4.97 (d, J = 2.3 Hz, 2H); ⁷⁷Se NMR (CDCl₃): δ 18.9 Hz, 1H), 5.04 (d, J = 9.7 Hz, 1H), 5.14 (dd, J = 1.1, 17.2 Hz, 1H), 5.92-6.00 (m, 1H), 6.18 (brs, 1H); ¹³C NMR (CDCl₃): δ -5.12, -4.33, 17.9,
22.2, 25.7, 26.4, 46.8, 64.7, 67.0, 116.9, 135.4, 167.2; ^{77}Se NMR (CDCl$_3$): δ 310.5; HRMS: $m/z =$ 292.0272 calcd. for C$_{10}$H$_{18}$NO$_2$SeSi, found 292.0231.

(3S,4R)-4-(3-Buteneseleno)-3-[(R)-tert-butyldimethylsilyloxyethyl]-2-azetidinone (3b). Yield 92%; Mp. 70–71 °C; IR (neat): 2952, 1761, 1672, 1567, 1386, 1257, 1095, 832 cm$^{-1}$; 1H NMR (CDCl$_3$): δ 0.07 (s, 3H), 0.08 (s, 3H), 0.88 (s, 9H), 1.24 (d, $J = 6.3$ Hz, 3H), 2.41-2.53 (m, 2H), 2.75 (t, $J = 7.4$ Hz, 2H), 3.21 (s, 1H), 4.23-4.28 (m, 1H), 4.99 (d, $J = 1.7$ Hz, $^2J(\text{Se}-\text{H}) = 26.9$ Hz, 1H), 5.05-5.13 (m, 2H), 5.77-5.87 (m, 1H), 5.92 (brs, 1H); 13C NMR (CDCl$_3$): δ -5.07, -4.31, 17.9, 22.1, 22.2, 25.7, 34.8, 46.4, 64.8, 67.4, 116.4, 136.9, 167.0; ^{77}Se NMR (CDCl$_3$): δ 277.3; HRMS: $m/z =$ 306.0429 calcd. for C$_{11}$H$_{20}$NO$_2$SeSi, found 306.0420.

General procedure for the N-alkylation reaction of 3:

Method A: To a suspension of NaH (60% in mineral oil, 2.07 mmol) in 5 mL of THF at 0 °C was added compound 3 (1.38 mmol) in 15 mL THF over 15 minutes. The mixture was stirred at 0 °C for an additional 15 min, alkyl bromide (2.07 mmol) was added dropwise. The reaction mixture was stirred at r.t. for 1 hour to 3 days and then taken in 10 mL of ammonium chloride solution. The organic layer was washed with 10 mL of a saturated solution of sodium bicarbonate. The aqueous layer was extracted 3 times with 20 mL of diethyl ether each. The combined organic layers were dried (Na$_2$SO$_4$) and concentrated. The residue was purified by column chromatography (SiO$_2$: hexane / diethyl ether = 15/1) to afford compound 4.

Method B: Lithium bis(trimethylsilyl)amide (0.66 mmol, 1.0 M solution in THF) was added dropwise to a stirred solution of compound 3 (0.55 mmol) in THF (10 mL) at -78 °C under argon atmosphere. The resultant solution was stirred at -78 °C for 10 minutes. Alkyl bromide (2.76 mmol) was added over 5 minutes and the resulting mixture allowed to warm to ambient temperature overnight. The resulting mixture was quenched with 10% HCl and extracted with diethyl ether. The combined organic extracts were dried (Na$_2$SO$_4$) and concentrated *in vacuo* to afford a residue that was further subjected to flash chromatography (SiO$_2$: hexane / diethyl ether = 15/1) to afford the title compound 4 as clear oil.

The isolated yield and the spectral data for 4a-e are as follows:

(3S,4R)-1-Allyl-4-(allylseleno)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-2-azetidinone (4a). Method A; Yield: 24%; IR (neat): 2928, 1763, 1633, 1388, 1251, 1065, 836 cm$^{-1}$; 1H NMR (CDCl$_3$): δ 0.06 (s, 3H), 0.08 (s, 3H), 0.87 (s, 9H), 1.22 (d, $J = 6.2$ Hz, 3H), 3.20-3.30 (m, 3H), 3.50 (dd, $J = 7.5$, 15.8 Hz, 1H), 4.08 (dd, $J = 4.8$, 15.8 Hz, 1H), 4.24-4.30 (m, 1H), 4.92 (d, $J = 2.1$ Hz, $^2J(\text{Se}-\text{H}) = 19.9$ Hz, 1H), 5.04 (d, $J = 9.7$ Hz, 1H), 5.10 (dd, $J = 1.4$, 17.2 Hz, 1H), 5.21 (dd, $J = 1.4$, 10.3 Hz, 1H), 5.29 (dd, $J = 1.4$, 17.2 Hz, 1H), 5.74-5.82 (m, 1H), 5.86-5.93 (m, 1H); 13C NMR (CDCl$_3$): δ -4.80, -4.61,
17.9, 22.3, 25.8, 51.8, 64.7, 65.7, 117.2, 118.6, 131.8, 134.6, 166.2; \(^{77}\)Se NMR (CDCl\(_3\)): \(\delta\) 235.6; HRMS: \(m/z = 332.0585\) calcd. for C\(_{13}\)H\(_{22}\)NO\(_2\)SeSi, found 332.0587.

\((3S,4R)-4-(Allylseleno)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-1-(2-methylallyl)-2-azetidinone (4b)\). Method A; Yield: 47%; IR (CHCl\(_3\)): 2955, 1758, 1632, 1387, 1254, 836 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 0.06 (s, 3H), 0.09 (s, 3H), 0.88 (s, 9H), 1.24 (d, \(J = 6.3\) Hz, 3H), 1.76 (s, 3H), 3.19-3.30 (m, 3H), 3.45 (d, \(J = 16.0\) Hz, 1H), 3.97 (d, \(J = 15.5\) Hz, 1H), 4.22-4.31 (m, 1H), 4.88 (d, \(J = 1.7\) Hz, 1H), 4.92 (s, 1H), 4.96 (s, 1H), 5.03 (d, \(J = 9.7\) Hz, 1H), 5.08 (d, \(J = 16.7\) Hz, 1H), 5.84-5.93 (m, 1H); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta\) -4.81, -4.49, 18.0, 20.6, 22.3, 25.8, 26.0, 46.0, 52.4, 65.0, 65.8, 113.4, 117.2, 134.6, 139.6, 166.5; \(^{77}\)Se NMR (CDCl\(_3\)): \(\delta\) 233.7; HRMS: \(m/z = 346.0742\) calcd. for C\(_{14}\)H\(_{24}\)NO\(_2\)SeSi, found 346.0760.

\((3S,4R)-1-Allyl-4-(3-butenylseleno)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-2-azetidinone (4c)\). Method A; Yield: 51%; IR (neat): 2955, 1762, 1643, 1387, 1252, 1063, 836 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 0.07 (s, 3H), 0.09 (s, 3H), 0.88 (s, 9H), 1.24 (d, \(J = 6.4\) Hz, 3H), 2.38-2.50 (m, 2H), 2.58-2.71 (m, 2H), 3.19 (s, 1H), 3.49 (dd, \(J = 7.3, 15.6\) Hz, 1H), 4.09 (dd, \(J = 4.6, 15.6\) Hz, 1H), 4.23-4.31 (m, 1H), 4.91 (d, \(J = 2.3\) Hz, \(2\)J\(^{\text{77}\text{Se-IH}} = 27.0\) Hz, 1H), 5.02-5.12 (m, 2H), 5.20 (d, \(J = 10.1\) Hz, 1H), 5.28 (d, \(J = 17.0\) Hz, 1H), 5.71-5.86 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta\) -4.81, -4.60, 18.0, 21.6, 22.3, 25.8, 34.7, 42.7, 51.5, 64.7, 65.9, 116.2, 118.6, 131.6, 136.8, 166.2; \(^{77}\)Se NMR (CDCl\(_3\)): \(\delta\) 213.0; HRMS: \(m/z = 346.0742\) calcd. for C\(_{14}\)H\(_{24}\)NO\(_2\)SeSi, found 346.0760.

\((3S,4R)-4-(3-Butenylseleno)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-1-(2-methylallyl)-2-azetidinone (4d)\). Method A; Yield: 82%; IR (neat): 2955, 1762, 1657, 1641, 1471, 1387, 1254, 1054, 836 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 0.06 (s, 3H), 0.09 (s, 3H), 0.88 (s, 9H), 1.25 (d, \(J = 6.4\) Hz, 3H), 2.38-2.50 (m, 2H), 2.58-2.71 (m, 2H), 3.19 (s, 1H), 4.23-4.31 (m, 1H), 4.91 (d, \(J = 2.3\) Hz, \(2\)J\(^{\text{77}\text{Se-IH}} = 27.0\) Hz, 1H), 5.02-5.12 (m, 2H), 5.20 (d, \(J = 10.1\) Hz, 1H), 5.28 (d, \(J = 17.0\) Hz, 1H), 5.71-5.86 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta\) -4.81, -4.60, 18.0, 21.6, 22.3, 25.8, 34.7, 42.7, 51.5, 64.7, 65.9, 116.2, 118.6, 131.6, 136.8, 166.2; \(^{77}\)Se NMR (CDCl\(_3\)): \(\delta\) 213.0; HRMS: \(m/z = 360.0898\) calcd. for C\(_{15}\)H\(_{26}\)NO\(_2\)SeSi, found 360.0887.

\((3S,4R)-1-(3-Butenyl)-4-(3-butenylseleno)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-1-(2-methylallyl)-2-azetidinone (4e)\). Method B; Yield: 38%; IR (neat): 2954, 1759, 1641, 1393, 1253, 1059, 836 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 0.07 (s, 3H), 0.08 (s, 3H), 0.88 (s, 9H), 1.24 (d, \(J = 6.3\) Hz, 3H), 2.30-2.49 (m, 4H), 2.59-2.70 (m, 2H), 2.97-3.04 (m, 1H), 3.17 (t, \(J = 1.8\) Hz, 1H), 3.41-3.48 (m, 1H), 4.19-4.25 (m, 1H), 4.86 (d, \(J = 1.7\) Hz, \(2\)J\(^{\text{77}\text{Se-IH}} = 30.9\) Hz, 1H), 5.03-5.15 (m, 4H), 5.76-5.85 (m, 2H); \(^{13}\)C NMR
Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2009

(CDCl₃): δ -4.82, -4.52, 17.9, 21.0, 22.4, 25.7, 32.2, 34.6, 39.7, 52.0, 65.1, 65.9, 116.3, 117.0, 134.9, 136.8, 166.3; ⁷⁷Se NMR (CDCl₃): δ 212.1; HRMS: m/z = 360.0898 calcd. for C₁₅H₂₆NO₂SeSi, found 360.0890

General procedure for the N-alkylation reaction of 5:

Method A: To a suspension of NaH (60% in mineral oil, 1.84 mmol) in 5 mL of THF at 0 °C was added (3S,4R)-3-[(R)-tert-butyldimethylsilyloxyethyl]-4-[2-(trimethylsilyl)ethylseleno]-2-azetidinone 5 (1.22 mmol) in 15 mL THF over 15 minutes. The mixture was stirred at 0 °C for an additional 15 min, alkyl bromide (1.84 mmol) was added dropwise. The reaction mixture was stirred at r.t. for 1 hour to 3 days and then taken in 10 mL of ammonium chloride solution. The organic layer was washed with 10 mL of a saturated solution of sodium bicarbonate. The aqueous layer was extracted 3 times with 20 mL of diethyl ether each. The combined organic layers were dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography (SiO₂: hexane / diethyl ether = 15/1) to afford compound 6.

Method B: Lithium bis(trimethylsilyl)amide (1.46 mmol, 1.0 M solution in THF) was added dropwise to a stirred solution of (3S,4R)-3-[(R)-tert-butyldimethylsilyloxyethyl]-4-[2-(trimethylsilyl)ethylseleno]-2-azetidinone 5 (1.22 mmol) in THF (10 mL) at -78 °C under argon atmosphere. The resultant solution was stirred at -78 °C for 10 minutes. Alkyl bromide (12.2 mmol) was added over 5 minutes and the resulting mixture allowed to warm to ambient temperature overnight. The resulting mixture was quenched with 10% HCl and extracted with diethyl ether. The combined organic extracts were dried (Na₂SO₄) and concentrated in vacuo to afford a residue that was further subjected to flash chromatography (SiO₂: hexane / diethyl ether = 15/1) to afford the title compound 6 as clear oil.

The isolated yield and the spectral data for 6a-c are as follows:

(3S,4R)-1-Allyl-3-[(R)-tert-butyldimethylsilyloxyethyl]-4-[2-(trimethylsilyl)ethylseleno]-2-azetidinone (6a). Method A; Yield: 64%; IR (neat): 2953, 2360, 1763, 1644, 1539, 1387, 1249, 837 cm⁻¹; ¹H NMR (CDCl₃): δ 0.00 (S, 9H), 0.04 (s, 3H), 0.06 (s, 3H), 0.86 (s, 9H), 0.90-1.00 (m, 2H), 1.22 (d, J = 6.3 Hz, 3H), 2.56-2.67 (m, 2H), 3.17 (t, J = 2.2 Hz, 1H), 3.48 (dd, J = 6.3, 14.8 Hz, 1H), 4.06 (dd, J = 5.2, 16.1 Hz, 1H), 4.22-4.27 (m, 1H), 4.88 (d, J = 2.3 Hz, ⁷⁷Se⁻¹H) = 21.8 Hz, 1H), 5.17 (dd, J = 1.1, 10.4 Hz, 1H), 5.24 (dd, J = 1.1, 17.1 Hz, 1H), 5.71-5.80 (m, 1H); ¹³C NMR (CDCl₃): δ -4.82, -4.58, -1.91, 18.0, 18.2, 18.7, 22.3, 25.8, 42.7, 51.6, 64.8, 65.8, 118.5, 131.8, 166.3; ⁷⁷Se NMR (CDCl₃): δ 262.9; HRMS: m/z = 392.0980 calcd. for C₁₅H₃₀NO₂SeSi₂, found 392.0976.

(3S,4R)-3-[(R)-tert-Butyldimethylsilyloxyethyl]-4-[2-(trimethylsilyl)ethylseleno]-1-(2-methylallyl)-2-azetidinone (6b). Method A; Yield: 84%; IR (neat): 2954, 1764, 1658, 1472, 1386, 1249, 838 cm⁻¹; ¹H NMR (CDCl₃): δ 0.00 (s, 9H), 0.04 (s, 3H), 0.08 (s, 3H), 0.86 (s, 9H), 0.90-1.03 (m, 2H), 1.24 (d, J = 6.0
Hz, 3H), 1.73 (s, 3H), 2.53-2.68 (m, 2H), 3.16-3.22 (m, 1H), 3.43 (d, \(J = 15.5 \) Hz, 1H), 3.98 (d, \(J = 15.5 \) Hz, 1H), 4.22-4.30 (m, 1H), 4.85 (d, \(J = 1.8 \) Hz, 1H), 4.88 (s, 1H), 4.92 (s, 1H); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta \) -4.82, -4.59, -2.00, 18.0, 18.5, 18.7, 20.5, 22.3, 25.8, 45.9, 52.3, 65.1, 65.7, 113.1, 139.4, 166.4; \(^{77}\)Se NMR (CDCl\(_3\)): \(\delta \) 262.9; HRMS: \(m/z \) = 406.1137 calcd. for C\(_{16}\)H\(_{32}\)NO\(_2\)SeSi\(_2\), found 406.1127.

(3S,4R)-1-(3-Butenyl)-3-[\((R)\)-tert-butylimethylsilyloxyethyl]-4-[2-(trimethylsilyl)ethylseleno]-2-azetidinone (6c). Method A; Yield: 14%; Method B; Yield: 45%; IR (neat): 2953, 1758, 1643, 1472, 1393, 1249, 838 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta \) 0.02 (S, 9H), 0.06 (s, 3H), 0.08 (s, 3H), 0.88 (s, 9H), 0.92-1.01 (m, 2H), 1.24 (d, \(J = 6.3 \) Hz, 3H), 2.28-2.41 (m, 2H), 2.55-2.70 (m, 2H), 2.96-3.05 (m, 1H), 3.18 (s, 1H), 3.40-3.48 (m, 1H), 4.17-4.26 (m, 1H), 4.85 (d, \(J = 1.7 \) Hz, \(^7\)J\(^{(77}\text{Se}-1\text{H}) = 28.1 \) Hz, 1H), 5.06 (dd, \(J = 1.1, 10.3 \) Hz, 1H), 5.12 (dd, \(J = 1.1, 17.2 \) Hz, 1H), 5.72-5.83 (m, 1H); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta \) -4.83, -4.50, -1.90, 17.5, 18.0, 18.6, 22.4, 25.8, 32.2, 39.7, 52.2, 65.2, 65.8, 117.0, 135.0, 166.4; \(^{77}\)Se NMR (CDCl\(_3\)): \(\delta \) 262.1; HRMS: \(m/z \) = 406.1137 calcd. for C\(_{16}\)H\(_{32}\)NO\(_2\)SeSi\(_2\), found 406.1134.

Table 1: Optimization conditions for the synthesis of key intermediate 4a.

<table>
<thead>
<tr>
<th>Entry</th>
<th>TBAF</th>
<th>Solvent</th>
<th>Temp.</th>
<th>Time</th>
<th>Yield (%)</th>
<th>4a</th>
<th>Diselenide</th>
<th>7a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1 equiv.</td>
<td>THF</td>
<td>-20°C to r.t.</td>
<td>3 days</td>
<td>12(^a)</td>
<td>5%</td>
<td>traces</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.5 equiv.</td>
<td>DMF</td>
<td>r.t.</td>
<td>1 h</td>
<td>65%</td>
<td>18%</td>
<td>traces</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)All reactions were carried out on 0.22 mmol scale on 6a.
\(^b\)Starting material was isolated in 35% yield.
Table 2 Synthesis of key intermediates 4 and 7

<table>
<thead>
<tr>
<th>Entry</th>
<th>Starting</th>
<th>R1</th>
<th>R2</th>
<th>Time</th>
<th>Yield (%)a</th>
<th>4</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6a</td>
<td>CH2=CH-CH2</td>
<td>CH2=CH-CH2</td>
<td>15 min</td>
<td>71 (4a)</td>
<td>(a)</td>
<td>trace (7a)</td>
</tr>
<tr>
<td>2</td>
<td>6b</td>
<td>CH2=CH-CH2</td>
<td>CH2=CH-CH2</td>
<td>15 min</td>
<td>66 (4b)</td>
<td>17 (7b)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6b</td>
<td>CH2=CH-CH2</td>
<td>CH2=CH-CH2</td>
<td>45 min</td>
<td>3 (4b)</td>
<td>87 (7b)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6a</td>
<td>CH2=CH-CH2</td>
<td>CH2=CH-CH2</td>
<td>18 h</td>
<td>10 (4c)</td>
<td>-</td>
<td>(7c)</td>
</tr>
<tr>
<td>5</td>
<td>6b</td>
<td>CH2=CH-CH2</td>
<td>CH2=CH-CH2</td>
<td>18 h</td>
<td>trace (4d)</td>
<td>trace (7d)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6a</td>
<td>CH2=CH-CH2</td>
<td>CH2(CH3)CH2-</td>
<td>15 min</td>
<td>78 (4f)</td>
<td>14 (7f)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6a</td>
<td>CH2=CH-CH2</td>
<td>CH2(CH3)CH2-</td>
<td>45 min</td>
<td>27 (4f)</td>
<td>65 (7f)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6b</td>
<td>CH2=CH-CH2</td>
<td>CH2(CH3)CH2-</td>
<td>1 h</td>
<td>58 (4g)</td>
<td>35 (7g)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6c</td>
<td>CH2=CH-CH2</td>
<td>CH2=CH-CH2</td>
<td>1 h</td>
<td>76 (4h)</td>
<td>16 (7h)</td>
<td></td>
</tr>
</tbody>
</table>

a Isolated yields. b Corresponding diselenide was obtained as a byproduct.

Typical procedure for the synthesis of 4 and 7:

To a stirred solution of 6 (0.22 mmol) and alkyl bromide (2.23 mmol) in degassed dry DMF (2 mL) was added TBAF (1 M solution in THF, 0.56 mmol) at r.t. with argon bubbling to reaction mixture. The stirring was continued for above mentioned time and then reaction mixture extracted with chloroform and washed with water. The combined organic layers were dried (Na2SO4) and concentrated. The residue was purified by column chromatography (SiO2: hexane / diethyl ether = 15/1) to afford compounds 4, 7 or corresponding diselenide.

The isolated yield and the spectral data for 4, 7 and diselenide are as follows:

Diselenide a. Table 2, Entry 1; Yield: 9%; IR (neat): 2954, 1767, 1644, 1539, 1384, 1255, 837 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 0.06 (s, 3H), 0.08 (s, 3H), 0.87 (s, 9H), 1.22 (d, \(J = 6.4\) Hz, 3H), 3.29 (s, 1H), 3.45 (dd, \(J = 7.3, 15.5\) Hz, 1H), 4.10 (dd, \(J = 5.0, 15.5\) Hz, 1H), 4.26-4.32 (m, 1H), 5.02 (d, \(J = 1.9\) Hz, \(2J(77\text{Se}-1\text{H}) = 40.8\) Hz, 1H), 5.22 (d, \(J = 10.0\) Hz, 1H), 5.30 (d, \(J = 16.9\) Hz, 1H), 5.70-5.80 (m, 1H); \(^13\)C NMR (CDCl\(_3\)): \(\delta\) -4.83, -4.64, 18.0, 22.4, 25.8, 43.0, 53.5, 64.4, 66.8, 119.4, 131.1, 165.7; \(77\)Se NMR (CDCl\(_3\)): \(\delta\) 320.4; HRMS: \(m/z = 637.1100\) calced. for \(\text{C}_{24}\text{H}_{43}\text{N}_2\text{O}_4\text{Se}_8\text{SeSi}_2\), found 637.1107.

3S,4R)-4-(Allylseleno)-3-[(R)-1-hydroxyethyl]-1-(2-methylallyl)-2-azetidinone (7b). Table 2, Entry 2; Yield: 17%; Entry 3; Yield: 87%; IR (neat): 3419, 2928, 1740, 1656, 1633, 1542, 1377, 1240, 815 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 1.31 (d, \(J = 7.5\) Hz, 3H), 1.75 (s, 3H), 2.04 (brs, 1H), 3.21-3.34 (m, 3H), 3.40 (d, \(J = 15.5\) Hz, 1H), 4.03 (d, \(J = 15.5\) Hz, 1H), 4.23-4.32 (m, 1H), 4.84 (d, \(J = 1.7\) Hz, \(2J(77\text{Se}-1\text{H}) = 22.4\) Hz, 1H), 4.93 (s, 1H), 4.96 (s, 1H), 5.04 (d, \(J = 9.7\) Hz, 1H), 5.12 (d, \(J = 17.2\) Hz,
1H), 5.84-5.95 (m, 1H); ¹³C NMR (CDCl₃): δ 20.2, 21.1, 26.0, 46.1, 52.1, 64.5, 65.5, 113.7, 117.3, 134.6, 139.3, 166.5; ⁷⁷Se NMR (CDCl₃): δ 238.7; HRMS: m/z = 289.0581 calcd. for C₁₂H₁₉NO₂Se, found 289.0596.

Diselenide b. Entry 5; Yield: 12%; IR (neat): 2954, 1766, 1658, 1471, 1377, 1256, 836 cm⁻¹; ¹H NMR (CDCl₃): δ 0.06 (s, 3H), 0.09 (s, 3H), 0.87 (s, 9H), 1.24 (d, J = 6.4 Hz, 3H), 1.76 (s, 3H), 3.32 (s, 1H), 3.39 (d, J = 16.0 Hz, 1H), 3.99 (d, J = 16.0 Hz, 1H), 4.27-4.33 (m, 1H), 4.92 (s, 1H), 4.95-5.00 (m, 2H); ¹³C NMR (CDCl₃): δ -4.82, -4.47, 18.1, 20.7, 22.5, 25.8, 46.2, 54.3, 64.8, 66.9, 114.0, 138.8, 165.8; MS (EI): m/z = 667 [M+ - tBu].

(3S,4R)-1-Allyl-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-4-(2-methylallylseleno)-2-azetidinone (4f). Entry 6; Yield: 78%; Entry 7; Yield: 27%; IR (CHCl₃): 2955, 2360, 1755, 1644, 1471, 1389, 1253, 1064, 756 cm⁻¹; ¹H NMR (CDCl₃): δ 0.06 (s, 3H), 0.08 (s, 3H), 0.87 (s, 9H), 1.21 (d, J = 6.3 Hz, 3H), 1.86 (s, 3H), 3.19-3.30 (m, 3H), 3.50 (dd, J = 6.8, 16.1 Hz, 1H), 4.05 (dd, J = 5.1, 16.1 Hz, 1H), 4.24-4.31 (m, 1H), 4.84 (s, 1H), 4.89 (s, 1H), 4.93 (d, J = 2.3 Hz, 1H), 5.20 (d, J = 10.3 Hz, 1H), 5.27 (d, J = 17.2 Hz, 1H), 5.73-5.82 (m, 1H); ¹³C NMR (CDCl₃): δ -4.80, -4.62, 17.9, 21.1, 22.2, 25.8, 30.9, 42.8, 52.0, 64.6, 65.8, 113.9, 118.5, 131.9, 141.7, 166.3; ⁷⁷Se NMR (CDCl₃): δ 221.0; HRMS: m/z = 346.0742 calcd. for C₁₄H₂₄NO₂SeSi, found 346.0727.

(3S,4R)-1-Allyl-3-[(R)-1-hydroxyethyl]-4-(2-methylallylseleno)-2-azetidinone (7f). Entry 6; Yield: 14%; Entry 7; Yield: 66%; IR (neat): 3419, 2969, 1740, 1644, 1589, 1427, 1375, 1244, 865 cm⁻¹; ¹H NMR (CDCl₃): δ 1.26 (d, J = 6.3 Hz, 3H), 1.84 (s, 3H), 2.64 (brs, 1H), 3.19-3.35 (m, 3H), 3.47 (dd, J = 6.3, 16.0 Hz, 1H), 4.05 (d, J = 4.6, 16.0 Hz, 1H), 4.19-4.26 (m, 1H), 4.82 (s, 1H), 4.85 (d, J = 2.3 Hz, 1H), 4.88 (s, 1H), 5.19 (d, J = 10.3 Hz, 1H), 5.28 (d, J = 17.2 Hz, 1H), 5.70-5.80 (m, 1H); ¹³C NMR (CDCl₃): δ 20.9, 21.1, 31.0, 42.6, 52.2, 64.2, 65.6, 114.0, 118.1, 131.4, 141.7, 166.5; ⁷⁷Se NMR (CDCl₃): δ 228.5; HRMS: m/z = 289.0581 calcd. for C₁₂H₁₉NO₂Se, found 289.0591.

(3S,4R)-3-[(R)-1-tert-Butyldimethylsilyloxyethyl]-1-(2-methylallylseleno)-2-azetidinone (4g). Entry 8; Yield: 58%; IR (neat): 2955, 1763, 1657, 1471, 1375, 1253, 836 cm⁻¹; ¹H NMR (CDCl₃): δ 0.04 (s, 3H), 0.08 (s, 3H), 0.87 (s, 9H), 1.21 (d, J = 6.3 Hz, 3H), 1.75 (s, 3H), 1.85 (s, 3H), 3.17 (d, J = 12.0 Hz, 1H), 3.21-3.30 (m, 2H), 3.42 (d, J = 16.0 Hz, 1H), 3.96 (d, J = 16.0 Hz, 1H), 4.23-4.31 (m, 1H), 4.82 (s, 1H), 4.86 (s, 1H), 4.88 (d, J = 2.3 Hz, 1H), 4.90 (s, 1H), 4.95 (s, 1H); ¹³C NMR (CDCl₃): δ -4.86, -4.49, 18.0, 20.6, 21.1, 22.2, 25.8, 31.1, 46.0, 52.6, 64.9, 65.7, 113.3, 113.9, 139.6, 141.6, 166.5; ⁷⁷Se NMR (CDCl₃): δ 219.1; HRMS: m/z = 360.0898 calcd. for C₁₅H₂₆NO₂SeSi, found 360.0893.
(3S,4R)-3-[(R)-1-Hydroxyethyl]-1-(2-methylallyl)-4-(2-methylallylseleno)-2-azetidinone (7g). Entry 8; Yield: 35%; IR (neat): 3419, 2969, 1746, 1657, 1538, 1375, 1247, 861 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta 1.27\) (d, \(J = 6.3\) Hz, 3H), 1.72 (s, 3H), 1.84 (s, 3H), 2.14 (brs, 1H), 3.20 (d, \(J = 12.0\) Hz, 1H), 3.27 (d, \(J = 12.0\) Hz, 1H), 3.30-3.33 (m, 1H), 3.36 (d, \(J = 16.1\) Hz, 1H), 4.02 (d, \(J = 16.1\) Hz, 1H), 4.20-4.29 (m, 1H), 4.78-4.84 (m, 2H), 4.87 (s, 1H), 4.91 (s, 1H), 4.94 (s, 1H); \(^1^3\)C NMR (CDCl\(_3\)): \(\delta 20.2, 21.0, 21.1, 31.1, 46.1, 52.3, 64.4, 65.5, 113.7, 114.0, 139.3, 141.7, 166.5\); \(^77\)Se NMR (CDCl\(_3\)): \(\delta 222.7\); HRMS: \(m/z = 303.0738\) calcd. for C\(_{13}\)H\(_{21}\)NO\(_2\)Se, found 303.0732.

(3S,4R)-4-Allylseleno-1-(3-butenyl)-3-[(R)-1-tert-butyldimethylsilyloxyethyl]-2-azetidinone (4h). Entry 9; Yield: 76%; IR (neat): 2954, 1760, 1633, 1393, 1253, 1060, 836 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta 0.06\) (s, 3H), 0.08 (s, 3H), 0.88 (s, 9H), 1.24 (d, \(J = 6.3\) Hz, 3H), 2.31-2.37 (m, 2H), 2.95-3.04 (m, 1H), 3.21-3.29 (m, 3H), 3.30-3.33 (m, 1H), 4.19-4.27 (m, 1H), 4.87 (d, \(J = 2.3\) Hz, \(\text{J}^{(77\text{Se}-1\text{H})} = 30.8\) Hz, 1H), 5.02-5.16 (m, 4H), 5.75-5.84 (m, 1H), 5.88-5.98 (m, 1H); \(^1^3\)C NMR (CDCl\(_3\)): \(\delta -4.84, -4.53, 17.9, 22.3, 25.3, 25.7, 32.2, 39.8, 52.4, 65.0, 65.8, 117.0, 117.1, 134.8, 136.9, 166.4\); \(^77\)Se NMR (CDCl\(_3\)): \(\delta 238.5\); HRMS: \(m/z = 346.0742\) calcd. for C\(_{14}\)H\(_{24}\)NO\(_2\)SeSi, found 346.0733.

(3S,4R)-4-Allylseleno-1-(3-butenyl)-3-[(R)-1-hydroxyethyl]-2-azetidinone (7h). Entry 9; Yield: 16%; IR (neat): 3419, 2968, 1737, 1634, 1402, 1241, 1043, 862 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta 1.32\) (d, \(J = 6.3\) Hz, 3H), 2.27-2.41 (m, 2H), 2.96-3.04 (m, 1H), 3.25-3.34 (m, 3H), 3.45-3.53 (m, 1H), 4.17-4.24 (m, 1H), 4.83 (d, \(J = 1.7\) Hz, \(\text{J}^{(77\text{Se}-1\text{H})} = 20.6\) Hz, 1H), 5.03-5.19 (m, 4H), 5.72-5.84 (m, 1H), 5.89-5.99 (m, 1H); \(^1^3\)C NMR (CDCl\(_3\)): \(\delta 21.1, 25.5, 32.0, 39.7, 52.3, 64.9, 65.8, 117.3, 117.4, 134.8, 134.9, 166.2\); \(^77\)Se NMR (CDCl\(_3\)): \(\delta 238.5\); HRMS: \(m/z = 289.0581\) calcd. for C\(_{12}\)H\(_{19}\)NO\(_2\)Se, found 289.0583.
Table 3: Optimization conditions for ring-closing metathesis of 4a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp.</th>
<th>Time</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>C (10 mol%)</td>
<td>DCM</td>
<td>r.t.</td>
<td>3 days</td>
<td>b</td>
</tr>
<tr>
<td>2.</td>
<td>C (10 mol%)</td>
<td>DCM</td>
<td>reflux</td>
<td>2 days</td>
<td>b</td>
</tr>
<tr>
<td>3.</td>
<td>C (10 mol%)</td>
<td>Toluene</td>
<td>reflux</td>
<td>1 day</td>
<td>b</td>
</tr>
<tr>
<td>4.</td>
<td>C (10 mol%)</td>
<td>Toluene</td>
<td>80 °C</td>
<td>4 days</td>
<td>b</td>
</tr>
<tr>
<td>5.</td>
<td>A (10 mol%)</td>
<td>DCM</td>
<td>reflux</td>
<td>2 days</td>
<td>trace e</td>
</tr>
<tr>
<td>6.</td>
<td>B (10 mol%)</td>
<td>DCM</td>
<td>reflux</td>
<td>3 days</td>
<td>38 f</td>
</tr>
<tr>
<td>7.</td>
<td>B (5 mol%)</td>
<td>Toluene</td>
<td>reflux</td>
<td>2 days</td>
<td>36 e</td>
</tr>
<tr>
<td>8.</td>
<td>B (10 mol%)</td>
<td>Toluene</td>
<td>reflux</td>
<td>2 h</td>
<td>78</td>
</tr>
<tr>
<td>9.</td>
<td>B (1 mol%)</td>
<td>Toluene</td>
<td>80 °C</td>
<td>4 days</td>
<td>trace e</td>
</tr>
<tr>
<td>10.</td>
<td>B (5 mol%)</td>
<td>Toluene</td>
<td>80 °C</td>
<td>4 days</td>
<td>26 f</td>
</tr>
<tr>
<td>11.</td>
<td>B (10 mol%)</td>
<td>Toluene</td>
<td>80 °C</td>
<td>4 days</td>
<td>45 f</td>
</tr>
</tbody>
</table>

a Isolated yields. *b* Only starting material was recovered. *c* Starting material was recovered in quantitative. *d* 52% of starting material was recovered. *e* 56% of starting material was recovered. *f* 65% of starting material was recovered. *g* 47% of starting material was recovered.

Typical procedure for the RCM reaction: 10 mol% of catalyst B was added to the compound 4 or 7 (0.05 mmol) in toluene (2 mL). The mixture was allowed to stir for 2-4 days under reflux prior to destruction of the catalyst by exposure to air. The mixture was evaporated and chromatographed to afford compound 8.

The isolated yield and the spectral data for 8a-j are as follows:

\[
(7R,8S)-8-[(R)-1-tert-Butyldimethylsilyloxyethyl]-1-aza-6-selenabicyclo[5.2.0]non-3-en-9-one (8a). \text{Yield:78%; IR (neat): 2954, 1762, 1471, 1396, 1252, 836 cm}^{-1}; ^1\text{H} \text{NMR (CDCl}_3\text{): }\delta \text{ 0.06 (s, 3H), 0.08 (s, 3H), 0.86 (s, 9H), 1.22 (d, } J = 6.3 \text{ Hz, 3H), 3.10 (dd, } J = 8.6, 14.3 \text{ Hz, 1H), 3.26 (dd, } J = 1.7, 3.4 \text{ Hz, 1H), 3.56 (dd, } J = 6.3, 14.3 \text{ Hz, 1H), 3.68 (dt, } J = 1.7, 17.2 \text{ Hz, 1H), 4.21-4.26 (m, 1H), 4.37 (dd, } J = 5.8, 17.2 \text{ Hz, 1H), 5.10 (d, } J = 1.7 \text{ Hz, }^2J^{\text{Se-1H}} = 30.9 \text{ Hz, 1H), 5.44-5.49 (m, 1H), 6.09-6.19 (m, 1H); }^{13}\text{C} \text{NMR (CDCl}_3\text{): }\delta \text{ -5.14, -4.22, 16.3, 17.9, 22.5, 25.7, 40.5, 49.5, 64.8, 68.5, 125.3, 132.0, 166.2; }^{77}\text{Se} \text{NMR (CDCl}_3\text{): }\delta \text{ 359.4; HRMS: } m/z = 304.0272 \text{ calcd. for C}_{11}\text{H}_{16}\text{NO}_2\text{SeSi, found 304.0258.} \]
(7R,8S)-8-[((R)-1-tert-Butyldimethylsilyloxyethyl]-3-methyl-1-aza-6-selena bicyclo[5.2.0]non-3-en-9-one (8b). Yield: 92%; IR (KBr): 2955, 1760, 1661, 1471, 1400, 1256, 1135, 838 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 0.06 (s, 3H), 0.07 (s, 3H), 0.86 (s, 9H), 1.20 (d, \(J = 6.3\) Hz, 3H), 1.73 (s, 3H), 3.02 (dd, \(J = 9.2, 14.3\) Hz, 1H), 3.23-3.26 (m, 1H), 3.54 (dd, \(J = 6.9, 14.3\) Hz, 1H), 3.60 (d, \(J = 17.2\) Hz, 1H), 5.08 (d, \(J = 1.7\) Hz, \(\text{^13}\)C NMR (CDCl\(_3\)): \(\delta\) -5.15, -4.25, 16.4, 17.9, 22.4, 23.1, 25.7, 44.9, 48.9, 64.7, 68.5, 126.3, 133.8, 166.3; \(\text{^77}\)Se NMR (CDCl\(_3\)): \(\delta\) 361.6; HRMS: \(m/z = 318.0429\) calcd. for C\(_{12}\)H\(_{20}\)NO\(_2\)SeSi, found 318.0412.

(7R,8S)-8-[((R)-1-Hydroxyethyl]-3-methyl-1-aza-6-selenabicyclo[5.2.0]non-3-en-9-one (8d). Yield: 82%; Mp. 97–98 °C; IR (KBr): 3365, 2927, 1737, 1676, 1655, 1399, 1289, 1152, 840 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 1.30 (d, \(J = 6.3\) Hz, 3H), 1.70 (brs, 1H), 1.86 (s, 3H), 3.19-3.26 (m, 2H), 3.40 (d, \(J = 13.2\) Hz, 1H), 5.10 (d, \(J = 1.8\) Hz, \(\text{^13}\)C NMR (CDCl\(_3\)): \(\delta\) 16.2, 21.4, 23.0, 45.1, 49.2, 64.6, 68.0, 126.1, 134.0, 166.2; \(\text{^77}\)Se NMR (CDCl\(_3\)): \(\delta\) 367.4; HRMS: \(m/z = 261.0268\) calcd. for C\(_{10}\)H\(_{15}\)NO\(_2\)Se, found 261.0223.
(8R,9S)-9-[(R)-1-tert-Butyldimethylsilyloxyethyl]-1-aza-7-selenabicyclo[6.2.0]dec-3-en-10-one (8g). Yield: 68%; IR (CHCl₃): 2953, 1758, 1692, 1566, 1486, 1255, 836 cm⁻¹; ¹H NMR (CDCl₃): δ 0.06 (s, 6H), 0.86 (s, 9H), 1.21 (d, J = 6.4 Hz, 3H), 2.66-2.78 (m, 3H), 2.82-2.97 (m, 2H), 3.67 (dd, J = 10.0, 13.2 Hz, 1H), 3.94 (dd, J = 6.9, 13.2 Hz, 1H), 4.21-4.28 (m, 1H), 5.00 (d, J = 2.3 Hz, 2J(⁷⁷Se-¹H) = 23.0 Hz, 1H), 5.53-5.61 (m, 1H), 5.90-5.99 (m, 1H); ¹³C NMR (CDCl₃): δ -5.19, -4.30, 17.9, 22.1, 23.6, 25.7, 30.7, 35.7, 50.3, 62.6, 64.5, 122.6, 135.0, 164.8; HRMS: m/z = 318.0429 calcd. for C₁₂H₂₀NO₂SeSi, found 318.0405.

(8R,9S)-9-[(R)-1-tert-Butyldimethylsilyloxyethyl]-1-aza-7-selenabicyclo[6.2.0]dec-4-en-10-one (8h). Yield: 74%; IR (CHCl₃): 2952, 1760, 1690, 1598, 1461, 1375, 1256, 1057, 836 cm⁻¹; ¹H NMR (CDCl₃): δ 0.05 (s, 3H), 0.07 (s, 3H), 0.87 (s, 9H), 1.19 (d, J = 6.3 Hz, 3H), 2.26-2.34 (m, 1H), 2.45-2.54 (m, 1H), 3.01 (t, J = 12.0 Hz, 1H), 3.12-3.18 (m, 1H), 3.25 (dd, J = 8.1, 12.0 Hz, 1H), 3.64 (dd, J = 9.7, 12.0 Hz, 1H), 3.82-3.88 (m, 1H), 4.21-4.27 (m, 1H), 5.10 (d, J = 2.3 Hz, 1H), 5.66-5.74 (m, 1H), 5.92-5.99 (m, 1H); ¹³C NMR (CDCl₃): δ -4.94, -4.36, 17.8, 18.7, 22.4, 25.2, 25.7, 42.9, 49.4, 64.7, 64.8, 128.6, 130.2, 168.2; HRMS: m/z = 318.0429 calcd. for C₁₂H₂₀NO₂SeSi, found 318.0403.

(8R,9S)-9-[(R)-1-tert-Butyldimethylsilyloxyethyl]-3-methyl-1-aza-7-selenabicyclo[6.2.0]dec-3-en-10-one (8i). Yield: 91%; IR (CHCl₃): 2954, 1760, 1670, 1461, 1377, 1255, 1064, 836 cm⁻¹; ¹H NMR (CDCl₃): δ 0.07 (s, 3H), 0.08 (s, 3H), 0.88 (s, 9H), 1.21 (d, J = 6.3 Hz, 3H), 1.77 (s, 3H), 2.58-2.86 (m, 4H), 2.94-2.97 (m, 1H), 3.75-3.82 (m, 2H), 4.23-4.29 (m, 1H), 4.93 (d, J = 2.3 Hz, 1H), 5.60 (t, J = 9.2 Hz, 1H); ¹³C NMR (CDCl₃): δ -4.77, -4.67, 18.0, 22.1, 22.8, 24.6, 25.8, 31.6, 40.6, 50.4, 62.9, 64.7, 128.9, 130.8, 165.2; ⁷⁷Se NMR (CDCl₃): δ 299.4; HRMS: m/z = 332.0585 calcd. for C₁₃H₂₂NO₂SeSi; found 332.0543.

(9R,10S)-10-[(R)-1-tert-Butyldimethylsilyloxyethyl]-1-aza-8-selenabicyclo[7.2.0]undec-4-en-11-one (8j). Yield: 74% yield; Mp. 77–78 °C; IR (CHCl₃): 2952, 1749, 1652, 1564, 1463, 1393, 1249, 1059, 833 cm⁻¹; ¹H NMR (CDCl₃): δ 0.05 (s, 3H), 0.06 (s, 3H), 0.86 (s, 9H), 1.22 (d, J = 6.3 Hz, 3H), 2.46-2.56 (m, 3H), 2.60-2.73 (m, 2H), 2.76-2.82 (m, 1H), 3.03 (dt, J = 5.7, 14.3 Hz, 1H), 3.19 (t, J = 2.3 Hz, 1H), 3.62-3.69 (m, 1H), 4.22-4.29 (m, 1H), 4.99 (d, J = 1.7 Hz, 1H), 5.58-5.69 (m, 2H); ¹³C NMR (CDCl₃): δ -5.13, -4.26, 17.9, 21.9, 22.2, 25.0, 25.7, 29.1, 40.6, 51.1, 64.6, 64.7, 129.4, 130.4, 167.3; HRMS: m/z = 332.0585 calcd. for C₁₃H₂₂NO₂SeSi; found 332.0551.