Electronic Supplementary Information
for
Iron(III) Chloride-Catalysed Direct Nucleophilic α-Substitution of Morita-Baylis-Hillman Alcohols with Alcohols, Arenes, 1,3-Dicarbonyl Compounds, and Thiols

Xiaoxiang Zhang, Weidong Rao, Sally, and Philip Wai Hong Chan*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore 637616, Singapore

E-mail: waihong@ntu.edu.sg
Figure S1. 1H and 13C NMR Spectra of 2-((6-Oxocyclohex-1-enyl)(phenyl)methyl)-1,3-diphenylpropane-1,3-dione (3a)
Figure S2. ^1H and ^{13}C NMR Spectra of 3-((6-Oxocyclohex-1-enyl)(phenyl)methyl)pentane-2,4-dione (3b)
Figure S3. 1H and 13C NMR Spectra of 2-((6-Oxocyclohex-1-enyl)(phenyl)methyl)-1-phenylbutane-1,3-dione (3c)
Figure S4. 1H and 13C NMR Spectra of Ethyl 2-benzoyl-3-(6-oxocyclohex-1-enyl)-3-phenylpropanoate (3d') (major diastereomer)
Figure S5. 1H and 13C NMR Spectra of Ethyl 2-benzoyl-3-(6-oxocyclohex-1-enyl)-3-phenylpropanoate (3d") (minor diastereomer)
Figure S6. 1H and 13C NMR Spectra of 2-((4-Nitrophenyl)(6-oxocyclohex-1-enyl) methyl)-1,3-diphenylpropane-1,3-dione (3e)
Figure S7. 1H and 13C NMR Spectra of 2-((4-Fluorophenyl)(6-oxocyclohex-1-enyl)methyl)-1,3-diphenylpropane-1,3-dione (3f)
Figure S8. 1H and 13C NMR Spectra of 2-((4-Chlorophenyl)(6-oxocyclohex-1-enyl)methyl)-1,3-diphenylpropane-1,3-dione (3g)
Figure S9. 1H and 13C NMR Spectra of 2-((4-Bromophenyl)(6-oxocyclohex-1-enyl) methyl)-1,3-diphenylpropane-1,3-dione (3h)
Figure S10. 1H and 13C NMR Spectra of 2-((6-Oxocyclohex-1-enyl)(p-tolyl)methyl)-1,3-diphenylpropane-1,3-dione (3i)
Figure 11. 1H and 13C NMR Spectra of 2-((4-Ethoxyphenyl)(6-oxocyclohex-1-enyl)methyl)-1,3-diphenylpropane-1,3-dione (3j)
Figure S12. 1H and 13C NMR Spectra of 2-((2-Chlorophenyl)(6-oxocyclohex-1-enyl)methyl)-1,3-diphenylpropane-1,3-dione (3l)
Figure S13. 1H and 13C NMR Spectra of 2-((4-Chlorophenyl)(5-oxocyclopent-1-enyl)methyl)-1,3-diphenylpropane-1,3-dione (3m)
Figure S14. 1H and 13C NMR Spectra of 2-((4-Chlorophenyl)(4-oxo-4H-chromen-3-yl)methyl)-1,3-diphenylpropane-1,3-dione (3n)
Figure S15. 1H and 13C NMR Spectra of 2-((4-hydroxy-3-methylphenyl)(phenyl)methyl)cyclohex-2-enone (3o)
Figure S16. 1H and 13C NMR Spectra of 2-((4-Hydroxy-3,5-dimethylphenyl)(phenyl)methyl)cyclohex-2-enone (3p)
Figure S17. 1H and 13C NMR Spectra of 2-(Ethoxy(phenyl)methyl)cyclohex-2-enone (3q)
Figure S18. 1H and 13C NMR Spectra of 2-(Benzyloxy(phenyl)methyl)cyclohex-2-enone (3r)
Figure 19. 1H and 13C NMR Spectra of 2-((But-3-enyloxy)(phenyl)methyl)cyclohex-2-enone (3s)
Figure S20. 1H and 13C NMR Spectra of 2-(Ethylthio(phenyl) methyl)cyclohex-2-enone (3t)
Figure S21. 1H and 13C NMR Spectra of 2-((4-Chlorophenythio)(phenyl)methyl) cyclohex-2-enone (3u)
Figure S22. 1H and 13C NMR Spectra of 2-(Phenyl(p-tolylthio)methyl)cyclohex-2-enone (3v)
Figure S23. HPLC Spectrum of Racemic 1a^{S1,S2}

Chiralcel OJ-H Column, <i>n</i>-hexane/i-PrOH = 90/10, flow rate 1 mL/min, \(\lambda = 254 \) nm.

![Chromatogram](image1)

Peak Table

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.52<sup>7</sup></td>
<td>11357568</td>
<td>272073</td>
<td>47.833</td>
<td>51.433</td>
</tr>
<tr>
<td>2</td>
<td>25.115</td>
<td>12282712</td>
<td>257502</td>
<td>52.177</td>
<td>48.567</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>23640271</td>
<td>530075</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Figure S24. HPLC Spectrum of Chiral 1a^{S1,S2}

Chiralcel OJ-H column, <i>n</i>-hexane/i-PrOH = 90/10, flow rate 1 mL/min, \(\lambda = 254 \) nm.

![Chromatogram](image2)

Peak Table

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.510</td>
<td>3507583</td>
<td>955138</td>
<td>25.284</td>
<td>32.001</td>
</tr>
<tr>
<td>2</td>
<td>24.50<sup>8</sup></td>
<td>44603124</td>
<td>760578</td>
<td>74.715</td>
<td>67.999</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>58200960</td>
<td>1103515</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

S24
Figure S25. HPLC Spectrum of Racemic 3a obtained from Racemic 1a

Chiralcel AD-H column, \(n\)-hexane/i-PrOH = 80/20, flow rate 1 mL/min, \(\lambda = 254 \) nm.

Figure S26. HPLC Spectrum of Racemic 3a obtained from Chiral 1a

Chiralcel AD-H column, \(n\)-hexane/i-PrOH = 80/20, flow rate 1 mL/min, \(\lambda = 254 \) nm.
References
