Electronic Supplementary Information.

Photolabile \(N \)-hydroxypyrid-2(1\(H \))-one derivatives of guanine nucleosides: a new method for independent guanine radical generation.

Panagiotis Kaloudis,a Cecilia Paris,b Despoina Vrantza,a Susana Encinas,b Raul Pérez-Ruiz,a Miguel A. Miranda*b and Thanasis Gimisis*a

aOrganic Chemistry Laboratory, Department of Chemistry, University of Athens, Panepistimiopolis, 15771 Athens, Greece
bInstituto de Tecnología Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

Experimental

General

\(^1 \text{H} \) NMR and \(^{13} \text{C} \) NMR spectra were recorded on a Varian Mercury 200 MHz or 400 MHz spectrometers, in deuterated solvents by using the residual solvent peak as internal standard. FT-IR spectra were recorded on a Perkin-Elmer 841 or 1760X Fourier transform infrared spectrometer using solutions in CHCl\(_3\). UV spectra were recorded on a Varian Cary 50 Conc. TLC was carried out on SiO\(_2\) (silica gel F\(_{254}\)). Flash chromatography was carried out on SiO\(_2\) (silica gel 60, SDS, 230-400 mesh ASTM). For reactions conducted under inert atmosphere, flasks were flame dried and purged with dry argon until cool.

Mass spectrometry measurements

Electrospray Ionization (ESI) mass spectrometry analyses of the nucleoside derivatives together with those of the modified oligonucleotides were conducted on a Finnigan AQA quadrupole, an LCQ Ion Trap (ThermoFinnigan, San Jose, CA) or a Finnigan LTQ-FT spectrometer. Samples were diluted in a solution of AcCN and water (50/50, v/v) that contained either 0.1% formic acid (positive mode) or 1% NH\(_3\) (negative mode) at a concentration of 10 \(\mu \)mol/L. The samples were introduced into the electrospray ion source by a syringe pump at a flow rate of 10 \(\mu \)L/min.

Nanosecond laser flash photolysis

For excitation at 308 nm, an excimer laser with a Xe-HCl-Ne mixture was used. The single
Pulses were ca. 17 ns duration and the energy was 200 mJ output at the source. For both systems, a pulsed Lo255 Oriel (Stratford, CT) xenon lamp was employed as the detecting light source. The laser flash photolysis apparatus consisted of the pulsed laser, the Xe lamp, a 77200 Oriel monochromator, an Oriel photomultiplier tube (PMT) system made up of a 77348 side-on PMT tube, 70680 PMT housing and a 70705 PMT power supply. The output signal from the oscilloscope (TDS-640A Tektronix, Köln, Germany) was transferred to a personal computer.

Concentrations for the guanosine derivatives and the reference compound were ca. 5×10^{-5} M and 9×10^{-5} M, respectively. These values ensured an absorbance of ~0.4 in the laser cell at the excitation wavelength. Each sample received only one shot; then fresh solutions were used for a new measurement. The spectra were recorded at intervals of 20 nm. When different thiols were added to the solution of the guanosine derivatives, their concentrations ranged from equimolar to 50 times for the case of tert-butylthiol and glutathione. In one experiment, isopropanol was used both as hydrogen donor and as solvent. For the measurements of quenching by oxygen, solutions were air-equilibrated or bubbled with oxygen.

Photolysis of 2c

Photolysis experiments were performed with a variable intensity Xenon arc lamp (150 W) equipped with a UV-A filter. Solutions were prepared and irradiated in pyrex glass vials with a 4.5 mW/cm2 local light intensity. The reaction mixture containing 2c (1.0 mM) in water in a pyrex glass vial was irradiated for 30 min either under argon or under aerobic conditions at room temperature. The photolysis progress was followed by reverse phase HPLC a Zorbax SB-C18 column (4.6 x 150 mm), eluted in triethylammonium acetate buffer (20 mM, pH 7) with a 0-25% acetonitrile non linear gradient over 30 min with a flow rate of 1.0 mL/min (detection at 254 nm) as well as with LC-ESI-MS carried out on a Alltima HP C-18 column (2.1 x 150 mm), eluted with a solvent mixture of 0.1% TFA, 0-25% acetonitrile/ 30 min at a flow rate of 0.2 mL/min (detection at 254 nm).
Fig. S1 HPLC chromatogram showing the photolysis of 2c after 20 min (upper) and after subsequent incubation for 24 h at 37°C.

Photolysis of 8d

The reaction mixture containing 8d (1.0 mM) in water in a pyrex glass vial was irradiated for 25 min under aerobic conditions at room temperature. The photoirradiated mixture was incubated for 24 h at room temperature in the dark and subsequently analyzed by reverse phase HPLC carried out on a Zorbax SB-C18 column (4.6 x 150 mm), eluted in triethylammonium acetate buffer (20 mM, pH 7) with a 0-25% acetonitrile non linear gradient over 30 min with a flow rate of 1.0 mL/min (detection at 254 nm) as well as with LC-ESI-MS carried out on a Alltima HP C-18 column (2.1 x 150 mm), with detection at 254 nm and elution with a solvent mixture of 0.1% TFA, 0-25% acetonitrile/30 min at a flow rate of 0.2 mL/min.
Fig. S2 HPLC chromatogram showing the photolysis of 8d after 25 min and subsequent overnight incubation at ambient temperature.

Fig. S3 LC-MS (upper) and LC-MS/MS (lower) analysis of the peak at 17.9 min (14d).
1H-NMR spectrum of compound 1b
1H-NMR spectrum of compound 2b
\[^{13} \text{C-NMR spectrum of compound 2b} \]
1H-NMR spectrum of compound 2d
13C-NMR spectrum of compound 2d
Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is (c) The Royal Society of Chemistry 2009

H-NMR spectrum of compound 1a
13C-NMR spectrum of compound 1a
1H-NMR spectrum of compound 2a
\[^{13}\text{C-NMR spectrum of compound 2a} \]
1H-NMR spectrum of compound 2c
The image shows a 13C-NMR spectrum of compound 2c. The spectrum includes peaks at various chemical shifts, indicating the presence of different carbon functionalities. The structure of compound 2c is depicted, showing functional groups such as hydroxyl (OH), amine (NH2), and others. The spectrum is used to assign chemical shifts and characterize the organic compound.
Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2009
1H-NMR spectrum of compound 5b
13C-NMR spectrum of compound 5b
19F-NMR spectrum of compound 5b
1H-NMR spectrum of compound 6b
C-NMR-APT spectrum of compound 6b
$^\text{1}$H-NMR spectrum of compound 7b
13C-NMR spectrum of compound 7b
1H-NMR spectrum of compound 8b
13C-NMR spectrum of compound 8b
1H-NMR spectrum of compound 8d
13C-NMR spectrum of compound 8d
1H-NMR spectrum of compound 9b
13C-NMR spectrum of compound 9b
19F-NMR spectrum of compound 9b
1H-NMR spectrum of compound 10b
19F-NMR spectrum of compound 10b
1H-NMR spectrum of compound 11b
13C-NMR spectrum of compound 11b
19F-NMR spectrum of compound 11b