Supplementary Information

Chirality at Phosphorus in Pentacoordinate Spirophosphoranes: Stereochemistry by X-ray Structure and Spectroscopic Analysis

Jian-Bo Hou, a Hui Zhang, a Jian-Nan Guo, a Peng-Xiang Xu, a Yan Liu, a Yu-Fen Zhao a,b,c and G. Michael Blackburn a

a Department of Chemistry, College of Chemistry and Chemical Engineering, and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, P. R. China. Fax: +86-592-2186292; Tel: +86-592-2183610; E-mail: yfzhao@xmu.edu.cn

b Department of Pharmaceutical Science, Medical College, Xiamen University, Xiamen, 361005. P. R. China

c The Key Laboratory for Bioorganic Phosphorus Chemistry, Ministry of Education, Department of Chemistry, School of Life Science and Engineering, Tsinghua University, Beijing, 100084. P. R. China

d Krebs Institute, Department of Molecular Biology & Biotechnology Sheffield University, S10 2TN, UK. Fax: +44 114 222800; Tel: +44 114 2229462; E-mail: g.m.blackburn@shef.ac.uk.

List of Contents

Contents Page

1. General information SI 2
2. Experimental procedures SI 3
3. Characterization data for 3a-4b SI 4
4. X-ray Crystallography data for 3b and 4b SI 6
5. Supplementary information references SI 9
6. 1H NMR, 13C NMR, 31P NMR, 15N NMR, HPLC, IR and CD spectra of 3a, 3b, 4a and 4b SI 10
7. HPLC spectra of 3a/3b and 4a/4b SI 28
8. Solid-state CD spectrum of 3a-4b SI 29

Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2009
1. General information

The solvents and reagents were dried and purified by standard methods before use. Triethylamine was refluxed and then distilled over KOH, tetrahydrofuran was refluxed then distilled over sodium, phosphorus trichloride was distilled directly. Melting points were determined (uncorrected) on a Yanaco MP-500 micro-melting point apparatus. Optical rotation were recorded using AUTOMATIC Polarimeter of RUDOLPH Research Analytical (AUTOPOL-IV) at 19.5 °C, 589 nm. Infrared (IR) spectra (film) were recorded on a Nicolet Avatar 360 FT-IR spectrometer in the range of 400 - 4000 cm\(^{-1}\). NMR experiments were performed at rt on a 400 or 500 MHz NMR spectrometer. \(^1\)H NMR spectra were recorded at 400 MHz using DMSO-d\(_6\) as solvent, \(^{13}\)C NMR spectra were determined at 100 MHz using DMSO-d\(_6\) or CDCl\(_3\) as solvent, \(^{31}\)P NMR spectra were determined at 162 MHz using DMSO-d\(_6\) as solvent, \(^{15}\)N NMR spectra were determined at 40.5 MHz using DMSO-d\(_6\) as solvent, \(^1\)H-\(^1\)H COSY spectra were recorded at 400 or 500 MHz using DMSO-d\(_6\) as solvent. \(^1\)H NMR, \(^1\)H-\(^1\)H COSY, \(^{13}\)C NMR chemical shifts are relative to DMSO, Me\(_4\)Si or CDCl\(_3\), \(^{31}\)P NMR chemical shifts are relative to 85% H\(_3\)PO\(_4\) and \(^{15}\)N NMR chemical shifts are relative to the saturated solution of \(^{15}\)NH\(_4\)Cl (D\(_2\)O as solvent). Solid-State circular dichroism (CD) spectra were recorded using a JASCO J-810 spectropolarimeter at rt. Disks were prepared by manually mixing and grinding a crystal sample (approximately 0.3 mg) KCl (approximately 200 mg). Approximately 30 mg of the mixture was collected and weighed before pressing for 0.5 min at 20 ton into a disk (13 mm dia). Reverse-phase HPLC experiments were carried out on a Agilent model 1100 series HPLC system (Agilent1100 Technologies, Wilmington, DE). Methanol of HPLC quality were obtained from Tedia (Fairfield, USA). Deionized water was from a Milli-Q (Millipore, USA) system. The HPLC used an Agilent, TC-C\(_{18}\) column, 5 \(\mu\)m (4.6 x 250 mm, Agilent, Co., USA). Mobile phases for HPLC were filtered through a 0.45 \(\mu\)m membrane filter (Millipore, USA) and degassed before use. Sample solutions were filtered before analysis through 0.45 \(\mu\)m membrane filters (Millipore, USA). Samples were introduced into the columns using a model injection valve with a 20 \(\mu\)L sample loop at rt (~25 °C). The mobile phase consisted of methanol (Solvent A) and deionized water (Solvent B) (3:2 v/v) as eluent. The flow rate was 0.8 mL/min. The UV detection was at 215 nm. High Resolution MS data used an APEX
III 7.0 TESLA FT-MS (Bruker Daltonics, Inc.), while the ESI-MS data was determined with a Bruker ESQYIRE~3000 plus. The crystal of intensity data were collected on an Oxford Gemini S Ultra CCD Area Detector, using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) at 173(2) K.

2. Experimental procedures

Following a general procedure,51 phosphorus trichloride (60 mmol) was added to a stirred solution of L- or D-phenylalanine (120 mmol) in 200 mL anhydrous tetrahydrofuran under nitrogen atmosphere at rt over 0.5 h. After stirring at rt for 0.5 h, triethylamine (3 equiv., 180 mmol) was added dropwise to the solution (~1 mL/min) at -10 °C to induce the reaction. Then the solution was stirred for 2 h. Solvent was removed under reduced pressure by rotary evaporation and the residue was washed rapidly with a sufficient quantity of water. The yields of crude product are near 75 %. The crude product was purified and separated by silica gel (300 - 400 mesh) column chromatography [CH2Cl2/CH3OH (v/v) = 100:1] to give white solid. 3a/3b were synthesized from L-phenylalanine, and 4a/4b were synthesized from D-phenylalanine, respectively. The relative yields of isomers a and b were 40:60 %. Compounds 3b and 4b were crystallized from a solution in acetone and petroleum ether (1:1 v/v).

3. Characterization data for 3a-4b
(3S,5A,8S)-3,8-dibenzyl-1,6-dioxa-4,9-diaza-5λ5-phosphaspiro[4.4]-nonane-2,7-dione (3a). Rf = 0.3 [TLC (silica gel); CHCl3/CH3OH (v/v) = 100:1]; separating efficiency 21.0 %; white solid; mp > 217 °C (decomposition); [α]D20 + 50.0 (c 1.0, DMSO); νmax(film)/cm⁻¹ 3346, 3085, 3066, 3028, 2961, 2932, 2856, 2467, 1738, 1455, 1288 and 846; δH(400 MHz; DMSO-d6; DMSO) 7.24 - 7.08 (10 H, m, 2 × CH of Ph), 5.79 (2 H, d, J 20.0, 2 × NH), 5.64 (1 H, dt, J 810.2 and 2.4, PfH), 4.11 - 4.09 (2 H, m, 2 × α-CH), 2.88 (2 H, dt, J 13.6 and 2.7, 2 × β-CH2(a)), 2.81 (2 H, dd, J 13.6 and 4.9, 2 × β-CH2(b)); δC(100 MHz; DMSO-d6; DMSO) 171.0 (d, J 6.4), 135.6, 130.0, 128.0, 126.7, 54.7 (d, J 3.9), 37.6 (d, J 4.4); δP(162 MHz; DMSO-d6; 85% H3PO4) – 60.02; δN[40.5 MHz; DMSO-d6; saturated solution of 15NH4Cl (D2O as solvent)] 61.88 (d, J 33.7); m/z (ESI): 359.1 (25%), 381.0 (100); HRMS m/z (ESI) 359.1161 (C18H20N2O4P⁺ requires 359.1161).

(3S,5A,8S)-3,8-dibenzyl-1,6-dioxa-4,9-diaza-5λ5-phosphaspiro[4.4]-nonane-2,7-dione (3b). Rf = 0.4 [TLC (silica gel), CHCl3/CH3OH (v/v) = 100:1]; separating efficiency 26.4 %; white solid; mp > 210 °C (decomposition); [α]D20 − 40.4 (c 1.0, DMSO); νmax(film)/cm⁻¹ 3329, 3082, 3062, 3027, 2928, 2890, 2848, 2458, 1735, 1454, 1288 and 854; δH(400 MHz; DMSO-d6; Me4Si) 7.30 - 7.10 (10 H, m, 2 × CH of Ph), 7.09 (1 H, d, J 804.9, PfH), 5.56 (2 H, d, J 20.8, 2 × NH), 4.02 - 3.96 (2 H, m, 2 × α-CH), 2.77 (2 H, dd, J 13.9 and 5.8, 2 × β-CH2(a)), 2.65 (2 H, dd, J 13.9 and 5.4, 2 × β-CH2(b)); δC(100 MHz; CDCl3; CDCl3) 169.9 (d, J 6.4), 136.0, 129.4, 128.9, 127.5, 55.7 (d, J 6.2), 40.0 (d, J 1.8); δP(162 MHz; DMSO-d6; 85%
H$_3$PO$_4$) – 63.03; δ_N[40.5 MHz; DMSO-d$_6$; saturated solution of 15NH$_4$Cl (D$_2$O as solvent)] 62.38 (d, J 34.5); m/z (ESI): 359.0 (25%), 381.0 (100); HRMS m/z (ESI) 359.1161 ($C_{18}H_{20}N_2O_4P^+$ requires 359.1161).

(3R,5α,8R)-3,8-dibenzyl-1,6-dioxa-4,9-diaza-5λ^5-phosphaspiro[4.4]-nonane-2,7-dione (4a). R_f = 0.3 [TLC (silica gel), CH$_2$Cl$_2$/CH$_3$OH (v/v) = 100:1]; separating efficiency 17.4 %; white solid; mp > 218 ºC (decomposition); [α]$^D_{20}$ – 50.2 (c 1.0, DMSO); $\nu$$_\text{max}$(film)/cm$^{-1}$ 3347, 3085, 3054, 3027, 2960, 2935, 2906, 2466, 1739, 1454, 1303 and 847; δ_H(400 MHz; DMSO-d$_6$; Me$_4$Si) 7.24 - 7.08 (10 H, m, 2 × CH of Ph), 5.80 (2 H, d, J 20.0, 2 × NH), 5.64 (1 H, dt, J 810.2 and 2.4, PH), 4.11 - 4.09 (2 H, m, 2 × α-CH), 2.88 (2 H, dt, J 13.3 and 2.6, 2 × β-CH$_2$(a)), 2.81 (2 H, dd, J 13.6 and 4.9, 2 × β-CH$_2$(b)); δ_C(100 MHz; DMSO-d$_6$; DMSO) 170.9 (d, J 6.4), 135.6, 130.0, 128.0, 126.7, 54.7 (d, J 4.0), 37.6 (d, J 4.2); δ_P(162 MHz; DMSO-d$_6$; 85% H$_3$PO$_4$) – 60.03; δ_N[40.5 MHz; DMSO-d$_6$; saturated solution of 15NH$_4$Cl (D$_2$O as solvent)] 61.58 (d, J 33.6); m/z (ESI): 359.1 (24%) 381.1 (100); HRMS m/z (ESI) 359.1154 ($C_{18}H_{20}N_2O_4P^+$ requires 359.1161).

(3R,5α,8R)-3,8-dibenzyl-1,6-dioxa-4,9-diaza-5λ^5-phosphaspiro[4.4]-nonane-2,7-dione (4b). R_f = 0.4 [TLC (silica gel), CH$_2$Cl$_2$/CH$_3$OH (v/v) = 100:1]; separating efficiency 27.8 %; white solid; mp > 210 ºC (decomposition); [α]$^D_{20}$ + 41.0 (c 1.0, DMSO); $\nu$$_\text{max}$(film)/cm$^{-1}$ 3327, 3082, 3061, 3027, 2928, 2895, 2848, 2459, 1735, 1454, 1289 and 855 cm$^{-1}$; δ_H(400 MHz; DMSO-d$_6$; Me$_4$Si) 7.30 - 7.10 (10 H, m, 2 × CH of Ph), 7.09 (1 H, d, J 805.0, PH), 5.56 (2 H, d, J 20.8, 2 × NH), 4.02 - 3.96 (2 H, m, 2 × α-CH), 2.77 (2 H,
dd, J 13.9 and 5.8, 2 × β-CH$_2$(a), 2.65 (2 H, dd, J 13.9 and 5.4, 2 × β-CH$_2$(b)); δC(100 MHz; CDCl$_3$; CDCl$_3$) 169.9 (d, J 6.4), 136.0, 129.4, 128.9, 127.5, 55.7 (d, J 6.2), 40.0 (d, J 2.0); δp(162 MHz; DMSO-d$_6$; 85% H$_3$PO$_4$) – 63.04 ppm; δN[40.5 MHz; DMSO-d$_6$; saturated solution of 15NH$_4$Cl (D$_2$O as solvent)] 62.32 (d, J 34.6); m/z (ESI): 359.1 (46%), 381.1 (100); HRMS m/z (ESI) 359.1155 (C$_{18}$H$_{20}$N$_2$O$_4$P$^+$ requires 359.1161).

4. X-ray Crystallography data for 3b and 4b

Crystals of 3b and 4b suitable for X-ray diffraction were grown from acetone and petroleum ether (1:1 v/v). Light white block crystal of 3b and 4b were mounted on top of glass fibers and transferred into a cold stream of nitrogen. Intensity data were collected on an Oxford Gemini S Ultra CCD Area Detector, using graphite-monochromated Mo K$_\alpha$ radiation (λ = 0.71073 Å) at 173(2) K. The structures were solved by direct methods with the program SHELXS-97.2 CCDC-721774 (3b) and CCDC-721775 (4b) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S1 Crystallographic data for compounds (ΛP,ΛC,ΛC)-3b and (ΔP,ΔC,ΔC)-4b.

<table>
<thead>
<tr>
<th></th>
<th>(ΛP,ΛC,ΛC)-3b</th>
<th>(ΔP,ΔC,ΔC)-4b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C${18}$H${19}$N$_2$O$_4$P</td>
<td>C${18}$H${19}$N$_2$O$_4$P</td>
</tr>
<tr>
<td>Formula weight</td>
<td>358.32</td>
<td>358.32</td>
</tr>
<tr>
<td>T, K</td>
<td>173(2)</td>
<td>173(2)</td>
</tr>
<tr>
<td>radiation (Mo K$_\alpha$), Å</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Cryst syst</td>
<td>Orthorhombic</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2$_1$2$_1$2$_1$</td>
<td>P2$_1$2$_1$2$_1$</td>
</tr>
<tr>
<td>a, Å</td>
<td>6.0491(4)</td>
<td>6.0474(2)</td>
</tr>
<tr>
<td>b, Å</td>
<td>8.3323(5)</td>
<td>8.3290(3)</td>
</tr>
<tr>
<td>c, Å</td>
<td>34.349(3)</td>
<td>34.270(2)</td>
</tr>
<tr>
<td>α, deg</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β, deg</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>
γ, deg 90 90
V, Å³ 1731.3(2) 1726.14(14)
Z 4 4
d_{calc}, mg/mm3 1.375 1.379
abs coeff, mm$^{-1}$ 0.184 0.185
$F(000)$ 752 752
Cryst size, mm³ 0.36 x 0.16 x 0.10 0.40 x 0.20 x 0.20
θ range, deg 3.56-25.00 2.52-25.00
no. of reflns collected 6300 5918
no. of indep reflns 2821 [R(int) = 0.0405] 2917 [R(int) = 0.0276]
no. of data/restraints/ params 2821/0/230 2917/12/227
final R indices [$I > 2\sigma(I)$] $R_1 = 0.0411$, $R_1 = 0.0625$, $wR_2 = 0.0629$, $wR_2 = 0.1442$
R indices (all data) $R_1 = 0.0698$, $R_1 = 0.0675$, $wR_2 = 0.0696$, $wR_2 = 0.1457$
Flack parameter -0.07(12) 0.0(2)
peak and hole [e Å³] 0.178 and -0.248 0.378 and -0.441

Table S2 Selected angles [°] of compounds ($\Lambda P,S_C,S_C$)-3b and ($\Lambda P,R_C,R_C$)-4b.

<table>
<thead>
<tr>
<th></th>
<th>($\Lambda P,S_C,S_C$)-3b</th>
<th>($\Lambda P,R_C,R_C$)-4b</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(4)-P(5)-N(9)</td>
<td>125.79(13)</td>
<td>125.9(2)</td>
</tr>
<tr>
<td>N(4)-P(5)-O(6)</td>
<td>89.94(10)</td>
<td>90.00(19)</td>
</tr>
<tr>
<td>N(9)-P(5)-O(6)</td>
<td>89.54(11)</td>
<td>89.4(2)</td>
</tr>
<tr>
<td>N(4)-P(5)-O(1)</td>
<td>89.29(10)</td>
<td>89.16(19)</td>
</tr>
<tr>
<td>N(9)-P(5)-O(1)</td>
<td>90.82(10)</td>
<td>91.00(19)</td>
</tr>
<tr>
<td>O(6)-P(5)-O(1)</td>
<td>179.22(10)</td>
<td>179.15(19)</td>
</tr>
<tr>
<td>C(2)-O(1)-P(5)</td>
<td>114.67(18)</td>
<td>115.3(3)</td>
</tr>
<tr>
<td>C(3)-N(4)-P(5)</td>
<td>118.93(17)</td>
<td>119.0(3)</td>
</tr>
<tr>
<td>O(2)-C(2)-O(1)</td>
<td>121.6(3)</td>
<td>122.3(4)</td>
</tr>
</tbody>
</table>
Table S3 Hydrogen-bond geometry (Å, °) of compounds \((\Lambda P,S_C,S_C)-3b\) and \((\Delta P,R_C,R_C)-4b\).

<table>
<thead>
<tr>
<th>Comp.</th>
<th>D-H···A</th>
<th>D-H</th>
<th>H···A</th>
<th>D···A</th>
<th>D-H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>3b</td>
<td>N(9)-H(9A)···O(7)(^i)</td>
<td>0.86</td>
<td>2.52</td>
<td>3.048(3)</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>C(12)-H(12A)···O(7)(^ii)</td>
<td>0.93</td>
<td>2.49</td>
<td>3.189(4)</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>N(4)-H(4A)···O(2)(^iii)</td>
<td>0.86</td>
<td>2.15</td>
<td>2.965(3)</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>C(22)-H(22A)···Cg(^iv)</td>
<td>0.93</td>
<td>3.34</td>
<td>4.145(3)</td>
<td>146</td>
</tr>
<tr>
<td>4b</td>
<td>N(9)-H(10A)···O(7)(^v)</td>
<td>0.86</td>
<td>2.53</td>
<td>3.049(6)</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>C(12)-H(12A)···O(7)(^vi)</td>
<td>0.93</td>
<td>2.49</td>
<td>3.187(7)</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>N(4)-H(4A)···O(2)(^vii)</td>
<td>0.86</td>
<td>2.15</td>
<td>2.963(5)</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>C(22)-H(22A)···Cg(^viii)</td>
<td>0.93</td>
<td>3.33</td>
<td>4.135(3)</td>
<td>145</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) \(x+1, y, z\); (ii) \(x+1, y-1, z\); (iii) \(x-1, y, z\); (iv) \(-x+1, y+1/2, -z+3/2\); (v) \(x+1, y, z\); (vi) \(x+1, y+1, z\); (vii) \(x-1, y, z\); (viii) \(-x, y-1/2, -z+3/2\). Cg is the centroid of the \(C_{18}-C_{23}\) phenyl ring.
Figure S1 The hydrogen-bonded motif of compound 3b, hydrogen bonds are shown as dashed lines.

Figure S2 The hydrogen-bonded motif of compound 4b, hydrogen bonds are shown as dashed lines.

5. Supplementary information references
6. 1H NMR, 13C NMR, 31P NMR, 15N NMR, HPLC, IR, and CD spectra of 3a, 3b, 4a and 4b.

Figure S3 1H NMR spectrum of compound 3a (400 MHz; DMSO-d_6; DMSO).

Figure S4 13C NMR spectrum of compound 3a (100 MHz; DMSO-d_6; DMSO).
Figure S5 31P NMR spectrum of compound 3a (162 MHz; DMSO-d$_6$; 85% H$_3$PO$_4$).

Figure S6 15N NMR spectrum of compound 3a [40.5 MHz; DMSO-d$_6$; saturated solution of 15NH$_4$Cl (D$_2$O as solvent)].
Figure S7 1H - 1H COSY NMR spectrum of compound 3a (500 MHz; DMSO-d$_6$; DMSO).

Figure S8 1H - 1H COSY NMR spectrum of compound 3a (400 MHz; DMSO-d$_6$ + D$_2$O; DMSO).
Figure S9 HPLC spectrum of compound 3a [(Agilent, TC-C18 column, 5 µm, 4.6 x 250 mm), mobile phase: elute CH3OH/H2O (v/v) = 3:2, 0.8 mL/mins; rt (25 °C); injection volume 20.0 µL; detection absorption at 215 nm.]

Figure S10 IR spectrum of compound 3a (film).
Figure S11 Solid-state CD spectrum of compound 3a (KCl disk).

Figure S12 1H NMR spectrum of compound 3b (400 MHz; DMSO-d$_6$; Me$_4$Si).
Figure S13 13C NMR spectrum of compound 3b (100 MHz; CDCl$_3$; CDCl$_3$).

Figure S14 31P NMR spectrum of compound 3b (162 MHz; DMSO-d$_6$; 85% H$_3$PO$_4$).
Figure S15 15N NMR spectrum of compound 3b [40.5 MHz; DMSO-d$_6$; saturated solution of 15NH$_4$Cl (D$_2$O as solvent)].

Figure S16 1H - 1H COSY NMR spectrum of compound 3b (500 MHz; DMSO-d$_6$; DMSO).
Figure S17 1H - 1H COSY NMR spectrum of compound 3b (400 MHz; DMSO-d_6 + D$_2$O; DMSO).

Figure S18 HPLC spectrum of compound 3b [(Agilent, TC-C$_{18}$ column, 5 µm, 4.6 x 250 mm), mobile phase: elute CH$_3$OH/H$_2$O (v/v) = 3:2, 0.8 mL/mins; rt (25 °C); injection volume 20.0 µL; detection absorption at 215 nm.]
Figure S19 IR spectrum of compound 3b (film).

Figure S20 Solid-state CD spectrum of compound 3b (KCl disk).
Figure S21 1H NMR spectrum of compound 4a (400 MHz; DMSO-d$_6$; Me$_4$Si).

Figure S22 13C NMR spectrum of compound 4a (100 MHz; DMSO-d$_6$; DMSO).
Figure S23 31P NMR spectrum of compound 4a (162 MHz; DMSO-d$_6$; 85% H$_3$PO$_4$).

Figure S24 15N NMR spectrum of compound 4a [40.5 MHz; DMSO-d$_6$; saturated solution of 15NH$_4$Cl (D$_2$O as solvent)].
Figure S25 1H - 1H COSY NMR spectrum of compound 4a (500 MHz; DMSO-d$_6$; DMSO).

Figure S26 1H - 1H COSY NMR spectrum of compound 4a (400 MHz; DMSO-d$_6$ + D$_2$O; DMSO).
Figure S27 HPLC spectrum of compound 4a [(Agilent, TC-C18 column, 5 μm, 4.6 x 250 mm), mobile phase: elute CH3OH/H2O (v/v) = 3:2, 0.8 mL/mins; rt (25 °C); injection volume 20.0 µL; detection absorption at 215 nm.]

Figure S28 IR spectrum of compound 4a (film).
Figure S29 Solid-state CD spectrum of compound 4a (KCl disk).

Figure S30 1H NMR spectrum of compound 4b (400 MHz; DMSO-d$_6$; Me$_4$Si).
Figure S31 13C NMR spectrum of compound 4b (100 MHz; CDCl$_3$; CDCl$_3$).

Figure S32 31P NMR spectrum of compound 4b (162 MHz; DMSO-d$_6$; 85% H$_3$PO$_4$).
Figure S33 15N NMR spectrum of compound 4b [40.5 MHz; DMSO-d$_6$; saturated solution of 15NH$_4$Cl (D$_2$O as solvent)].

Figure S34 1H - 1H COSY NMR spectrum of compound 4b (500 MHz; DMSO-d$_6$; DMSO).
Figure S35 1H - 1H COSY NMR spectrum of compound 4b (400 MHz; DMSO-d$_6$ + D$_2$O; DMSO).

Figure S36 HPLC spectrum of compound 4b [(Agilent, TC-C$_{18}$ column, 5 μm, 4.6 x 250 mm), mobile phase: elute CH$_3$OH/H$_2$O (v/v) = 3:2, 0.8 mL/mins; rt (25 °C); injection volume 20.0 μL; detection absorption at 215 nm.]
Figure S37 IR spectrum of compound 4b (film).

Figure S38 Solid-state CD spectrum of compound 4b (KCl disk).
7. HPLC spectra of 3a/3b and 4a/4b

Figure S39 HPLC spectrum of compounds 3a (15.678 min) and 3b (18.006 min). [(Agilent, TC-C₁₈ column, 5 µm, 4.6 x 250 mm), mobile phase: elute CH₃OH/H₂O (v/v) = 3:2, 0.8 mL/mins; rt (25 °C); injection volume 20.0 µL; detection absorption at 215 nm.]

Figure S40 HPLC spectrum of compounds 4a (15.664 min) and 4b (17.981 min). [(Agilent, TC-C₁₈ column, 5 µm, 4.6 x 250 mm), mobile phase: elute CH₃OH/H₂O (v/v) = 3:2, 0.8 mL/mins; rt (25 °C); injection volume 20.0 µL; detection absorption at 215 nm.]
8. Solid-state CD spectrum of 3a-4b

Figure S41 Solid-state CD spectra of compounds 3a-4b (KCl disk).