Supporting Information

Photo-induced molecular-recognition-mediated adhesion of giant vesicles

Friederike M. Mansfeld,a Guoqiang Fengb and Sijbren Otto*c

a. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
b. Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, People’s Republic of China.
c. Centre for Systems Chemistry, Stratingh Institute, University of Groningen, The Netherlands. Fax: +31 50 363 4296; Tel: 31 50 363 8639; E-mail: s.otto@rug.nl.

Gel Filtration

Fig. S1 Elution profiles of egg PC and 1a upon gel filtration.

Dynamic light scattering

Fig. S2 Dynamic light scattering traces of 5 mM egg PC vesicles with and without 5 mol% cis- or trans-1a before and after addition of guests 2 or 3.
Fluorescence titration

![Graph](image)

Fig. S3 Fluorescence titration for determining the apparent binding constant of *cis*-1a to 3. (a) Quenching of isoquinolinium fluorescence upon addition of egg PC vesicles containing 5 mol% *cis*-1a to a 50µM solution of polymeric guest 3. (b) Fit of the data using a naive 1:1 binding model.

![Graph](image)

Fig. S4 Fluorescence titration for determining the apparent binding constant of *trans*-1a to 2. (a) Quenching of isoquinolinium fluorescence upon addition of egg PC vesicles containing 5 mol% *trans*-1a to a 2 µM solution of monovalent guest 2. (b) Fit of the data using a 1:1 binding model.
Fusion Assay

Fig. S5 Fusion assay for LUVs containing 5 mol% 1a in (a) the *trans*- and (b) the *cis*- conformation after addition of polyvalent guest 3. Fluorescence emission intensities of NBD (at 530nm, triangles) and Rh (at 590nm, circles) were followed upon excitation at 470nm. The addition of 3 had no influence on fluorescence intensity.

NMR spectra and HPLC analysis of 1a

1H-NMR of 1a
NMR of 1a

HPLC analysis of 1a

Conditions. Column: Eclipse XDB C8 150×4.6mm; Solvent A: water (0.1% formic acid), Solvent B:THF; gradient 0-20min 40-100% B; flow rate: 1 mL / min; λ 350 nm; ambient temperature