Phosphorane intermediate vs. leaving group stabilization by intramolecular hydrogen bonding in the cleavage of trinucleoside monophosphates: implications to catalysis by the large ribozymes

Tuomas Lönnberg and Maarit Laine

Supplementary information

Contents

<table>
<thead>
<tr>
<th>Spectrum Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H NMR spectrum of 10</td>
<td>2</td>
</tr>
<tr>
<td>13C NMR spectrum of 10</td>
<td>6</td>
</tr>
<tr>
<td>1H NMR spectrum of 11</td>
<td>7</td>
</tr>
<tr>
<td>13C NMR spectrum of 11</td>
<td>11</td>
</tr>
<tr>
<td>HPLC chromatogram of 11</td>
<td>12</td>
</tr>
<tr>
<td>UV spectrum of 11</td>
<td>13</td>
</tr>
<tr>
<td>1H NMR spectrum of 7</td>
<td>14</td>
</tr>
<tr>
<td>13C NMR spectrum of 7</td>
<td>18</td>
</tr>
<tr>
<td>HPLC chromatogram of 7</td>
<td>19</td>
</tr>
<tr>
<td>UV spectrum of 7</td>
<td>20</td>
</tr>
<tr>
<td>1H NMR spectrum of 5b</td>
<td>21</td>
</tr>
<tr>
<td>31P NMR spectrum of 5b</td>
<td>26</td>
</tr>
<tr>
<td>1H NMR spectrum of 4b</td>
<td>27</td>
</tr>
<tr>
<td>31P NMR spectrum of 4b</td>
<td>31</td>
</tr>
<tr>
<td>HPLC chromatogram of 4b</td>
<td>32</td>
</tr>
<tr>
<td>UV spectrum of 4b</td>
<td>33</td>
</tr>
<tr>
<td>Observed pseudo first-order rate constants and product distributions for the hydrolysis of 1a, b</td>
<td>34</td>
</tr>
<tr>
<td>Sample chromatogram of the RP HPLC analysis of the reaction mixtures</td>
<td>35</td>
</tr>
</tbody>
</table>
SpinWorks 3: 5'-O-Methyl-2'-azido-2'-deoxyuridine

file: E:\Maarlin spектрюtatsidol1\fid
ext: <q30>
transmitter freq.: 500.133089 MHz
time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
number of scans: 16

freq. of 0 ppm: 500.130000 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000
Hz/cm: 255.657 ppm/cm: 0.51118
Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2009

SpinWorks 3: 5’-O-Methyl-2’-azido-2’-deoxyuridine

![NMR spectrum of 5’-O-Methyl-2’-azido-2’-deoxyuridine](image)

File Details:
- File: E:\Mealin1n spekt1tsido11\fid
- Experiment: <zq30>
- Transmitter frequency: 500.133009 MHz
- Time domain size: 65536 points
- Width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
- Number of scans: 16

Processing Details:
- Frequency of 0 ppm: 500.130000 MHz
- Processed size: 32768 complex points
- LB: 0.000, GF: 0.00000
- Hz/cm: 111.091, ppm/cm: 0.22212
SpinWorks 3: 5'-O-Methyl-2'-azido-2'-deoxyuridine

file: E:\Manitin spektr\atsidol11\fid ext: <zg30>
transmitter freq.: 500.133089 MHz
time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
number of scans: 16

freq. of 0 ppm: 500.130000 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000
Hz/cm: 54.185 ppm/cm: 0.10834
SpinWorks 3: 5'-O-Methyl-2'-azido-2'-deoxyuridine

file: E:\Maaretin spektrit\atsido\1Lfd
expt: <seg30>
transmitter freq.: 500.133089 MHz
time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
number of scans: 16
Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2009

SpinWorks 3: 5'-O-Methyl-2'-azido-2'-deoxyuridine

![SpinWorks 3: 5'-O-Methyl-2'-azido-2'-deoxyuridine](image)

File: E:\Maarten spektren\Latsis\13\fid expt: <zggp30>
Transmitter freq.: 125.770364 MHz
Time domain size: 65536 points
Width: 30030.03 Hz = 238.7687 ppm = 0.458222 Hz/pt
Number of scans: 1115

Freq. of 0 ppm: 125.757789 MHz
Processed size: 32768 complex points
LB: 0.000 **GF:** 0.0000
Hz/cm: 973.091 **ppm/cm:** 7.73704
SpinWorks 3: 5′-O-Methyl-2′-amino-2′-deoxyuridine

file: E:\Meantin spektr\amino1\1vfd ext: <qz30>
transmitter freq.: 500.133089 MHz
time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
number of scans: 16

tfreq. of 0 ppm: 500.130000 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.00000
Hz/cm: 176.562 ppm/cm: 0.35303
SpinWorks 3: 5'-O-Methyl-2'-amino-2'-deoxyuridine

file: E:\Maartin spektrit\amino1\vid exppt: <og30>
transmitter freq.: 500.133089 MHz
time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
number of scans: 16
freq. of 0 ppm: 500.130000 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000
Hz/cm: 55.865 ppm/cm: 0.11170
SpinWorks 3: 5'-O-Methyl-2'-amino-2'-deoxyuridine

file: E:\Mealinin spekttr\amino\1Fid ext: <qz30>
transmitter freq.: 500.13000 MHz
time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
number of scans: 16
freq. of 0 ppm: 500.130000 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000
Hz/cm: 12.429 ppm/cm: 0.02485
SpinWorks 3: 5'-O-Methyl-2'-amino-2'-deoxyuridine

file: E:\Maatin spekttr\amino11فيد expt: <zg30>
transmitter freq.: 500.133089 MHz
time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
number of scans: 16
Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2009

SpinWorks 3: 5’-O-Methyl-2’-amino-2’-deoxyuridine

file: E:\Maarit\spektrit\amino\113\fid exp: <zpgg30>
transmitter freq.: 125.770364 MHz
time domain size: 65536 points
width: 30030.03 Hz = 238.7687 ppm = 0.458222 Hz/pt
number of scans: 1528

freq. of 0 ppm: 125.757789 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000
Hz/cm: 1000.247 ppm/cm: 7.95296

11
Fig. S1 HPLC chromatogram of 11 [Hypersil-Keystone Aquasil C18 column (4 × 150 mm, 5 μm); flow rate = 1 mL min⁻¹; 60 mM acetate buffer (pH = 4.3) and a linear gradient of 3→50% MeCN during 60 min, then 50% MeCN for 20 min].
Fig. S2 UV spectrum of 11.
Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is © The Royal Society of Chemistry 2009

SpinWorks 3: 5'-O-Methyl-2'-trifluoroacetamido-2'-deoxyuridine

file: ...\Maaritin spektri\trifluoro\11\d1\expt: <cz30>

transmitter freq.: 500.133009 MHz
time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157652 Hz/pt
number of scans: 16

freq. of 0 ppm: 500.130000 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000 Hz/cm: 248.183 ppm/cm: 0.49623
SpinWorks 3: 5'-O-Methyl-2'-trifluoroacetamido-2'-deoxyuridine

file: ...Maaritin spektrit\trifluoro\1\1\1\d expt: <zg30>
transmitter freq.: 500.133089 MHz
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
time domain size: 65536 points
number of scans: 16

freq. of 0 ppm: 500.130000 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000
Hz/cm: 56.108 ppm/cm: 0.11219
SpinWorks 3: 5'-O-Methyl-2'-trifluoroacetamido-2'-deoxyuridine

file: \...\Maaritin spektri\trifluoro1\\1\d\ expt: <zg30>
transmitter freq.: 500.133089 MHz

time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
number of scans: 16

freq. of 0 ppm: 500.130000 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000
Hz/cm: 24.378 ppm/cm: 0.04874
SpinWorks 3: 5'-O-Methyl-2'-trifluoroacetamido-2'-deoxyuridine

file: ...\Maaritin spektrit\trifluoro1\1\fd exp: <cg30>
transmitter freq.: 500.130089 MHz
time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
number of scans: 16

freq. of 0 ppm: 500.130000 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000
Hz/cm: 6.717 ppm/cm: 0.01343
SpinWorks 3: 5′-O-Methyl-2′-trifluoroacetamido-2′-deoxyuridine

file: ...aatin spectra/trifluoro1135f
fid : zggp30
transmitter freq.: 125.770364 MHz
processed size: 32768 complex points
Hz/cm: 923.305 ppm/cm: 7.34119
f禄q. of 0 ppm: 125.757789 MHz

width: 30030.03 Hz = 238.7687 ppm = 0.458222 Hz/pt
number of scans: 1196
Fig. S3 HPLC chromatogram of 7 [Hypersil-Keystone Aquasil C18 column (4 × 150 mm, 5 μm); flow rate = 1 mL min⁻¹; 60 mM acetate buffer (pH = 4.3) and a linear gradient of 3→50% MeCN during 60 min, then 50% MeCN for 20 min].
Fig. S4 UV spectrum of 7.
Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2009

SpinWorks 3:

$N^\text{\textregistered}$-Benzoyl-2'$,3'$-O-methyleneadenosin-5'-yl 5'-O-methyl-3'$-O-(4,4'$-dimethoxytrityl)uridin-2'$-yl 5'$-O-methyl-2'$-trifluoroacetamido-2'$-deoxyuridin-3'$-yl phosphate

file: ...\t\\trit¥\textregistered\text registered

transmitter freq.: 500.130000 MHz
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
time domain size: 65536 points
data: 0.000000 ppm/cm: 0.13449

number of scans: 16

freq. of 0 ppm: 500.130000 MHz
processed size: 32768 complex points
Hz/cm: 67.262 ppm/cm: 0.13449
Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2009

SpinWorks 3:

N^α-Benzoyl-2',3'-O-methyleneadenosin-5'-yl 5'-O-methyl-3'-O-(4,4'-dimethoxytrityl)uridin-2'-yl 5'-O-methyl-2'-trifluoroacetamido-2'-deoxyuridin-3'-yl phosphate

file: ...trit/sofaatti_haleksimainen/tifd
expt: <zg20>
transmitter freq.: 500.133089 MHz
time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
number of scans: 16

freq. of 0 ppm: 500.139000 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000
Hz/cm: 44.301 ppm/cm: 0.08858

23
SpinWorks 3:

N^\ominus-Benzoyl-2',3'-O-methyleneadenosin-5'-yl 5'-O-methyl-3'-O-(4,4'-dimethoxytrityl)uridin-2'-yl 5'-O-methyl-2'-trifluoroacetamido-2'-deoxyuridin-3'-yl phosphate

file: .../t illustrate, 1keksimmäinen/t1/fid expt: <ez30>
transmitter freq.: 500.133089 MHz
time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
number of scans: 16

freq. of 0 ppm: 500.130000 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000
Hz/cm: 44.301 ppm/cm: 0.08858
N^α-Benzoyl-2'-3'-O-methyleneadenosin-5'-yl 5'-O-methyl-3'-O-(4,4'-dimethoxytrityl)uridin-2'-yl 5'-O-methyl-2'-trifluoroacetamido-2'-deoxyuridin-3'-yl phosphate

SpinWorks 3:

file: ...rit/fsfaatti,1/kaskimäinen\{3\}fd expt: <zgpg3d>
transmitter freq.: 202.446187 MHz
live domain size: 65536 points
width: 80.645 Hz = 398.3536 ppm = 1.230548 Hz/pt
number of scans: 154

freq. of 0 ppm: 202.454310 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000
Hz/cm: 2185.381 ppm/cm: 10.79487
2',3'-O-Methyleneadenosin-5'-yl 5'-O-methyl-3'-O-(4,4'-dimethoxytrityl)uridin-2'-yl 5'-O-methyl-2'-trifluoroacetamido-2'-deoxyuridin-3'-yl phosphate
<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8125</td>
<td>3.7275</td>
<td>3.7151</td>
<td>3.7022</td>
</tr>
<tr>
<td>3.6875</td>
<td>3.6789</td>
<td>3.6760</td>
<td>3.6729</td>
</tr>
<tr>
<td>3.6645</td>
<td>3.6631</td>
<td>3.6552</td>
<td>3.5914</td>
</tr>
<tr>
<td>3.5826</td>
<td>3.5699</td>
<td>3.5521</td>
<td>3.3542</td>
</tr>
<tr>
<td>3.3226</td>
<td>3.3151</td>
<td>3.3000</td>
<td>3.2941</td>
</tr>
<tr>
<td>3.2645</td>
<td>3.2627</td>
<td>3.2400</td>
<td>3.2386</td>
</tr>
<tr>
<td>3.2354</td>
<td>3.2278</td>
<td>3.2172</td>
<td>3.1909</td>
</tr>
<tr>
<td>3.1662</td>
<td>3.1607</td>
<td>3.1441</td>
<td>3.1384</td>
</tr>
<tr>
<td>3.1224</td>
<td>3.0893</td>
<td>3.0710</td>
<td>2.67</td>
</tr>
</tbody>
</table>

2',3'-O-Methyleneadenosin-5'-yl 5'-O-methyl-3'-O-(4,4'-dimethoxytrityl)uridin-2'-yl 5'-O-methyl-2'-trifluoroacetamido-2'-deoxyuridin-3'-yl phosphate

SpinWorks 3:

file: ...phaati, suojat pointettu2)1\id expt: <zg30>
transmitter freq.: 500.130000 MHz
time domain size: 65536 points
width: 10330.58 Hz = 20.6557 ppm = 0.157632 Hz/pt
number of scans: 150

freq. of 0 ppm: 500.130000 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.00000
Hz/cm: 41.113 ppm/cm: 0.08220
2',3'-O-Methyleneadenosin-5'-yl 5'-O-methyl-3'-O-(4,4'-dimethoxytrityl)uridin-2'-yl 5'-O-methyl-2'-trifluoroacetamido-2'-deoxyuridin-3'-yl phosphate

SpinWorks 3:

![SpinWorks 3 diagram]

file: ...faatti, suojat poisittu(2)
hold: <zgpg30>
transmitter freq.: 202.446187 MHz
time domain size: 65536 points
width: 80645.16 Hz = 398.3536 ppm = 1.230548 Hz/pt
number of scans: 200

freq. of 0 ppm: 202.456310 MHz
processed size: 32768 complex points
LB: 0.000 GF: 0.0000
Hz/cm: 2088.144 ppm/cm: 10.31457
Fig. S5 HPLC chromatogram of 4b [Hypersil-Keystone Aquasil C18 column (4 × 150 mm, 5 μm); flow rate = 1 mL min⁻¹; 60 mM acetate buffer (pH = 4.3) and a linear gradient of 3→50% MeCN during 60 min, then 50% MeCN for 20 min].
Fig. S6 UV spectrum of 4b.
Table S1 Observed pseudo first-order rate constants and product distributions for the hydrolysis of 1a, b.

<table>
<thead>
<tr>
<th>pH</th>
<th>[buffer] / mmol L(^{-1})</th>
<th>(k_{\text{obs}} / 10^{-4} \text{ s}^{-1})</th>
<th>(k_B / (k_A + k_B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>-</td>
<td>39 ± 2</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>0.39</td>
<td>-</td>
<td>11 ± 3</td>
<td>0.64 ± 0.07</td>
</tr>
<tr>
<td>1.00</td>
<td>-</td>
<td>5.6 ± 0.3</td>
<td>0.60 ± 0.06</td>
</tr>
<tr>
<td>1.37</td>
<td>-</td>
<td>2.8 ± 0.1</td>
<td>0.62 ± 0.03</td>
</tr>
<tr>
<td>2.00</td>
<td>-</td>
<td>3.3 ± 0.5</td>
<td>0.62 ± 0.06</td>
</tr>
<tr>
<td>2.81</td>
<td>47.5</td>
<td>4.3 ± 0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95.0</td>
<td>5.2 ± 0.1</td>
<td>0.60 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>190.0</td>
<td>7.2 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>3.37</td>
<td>47.5</td>
<td>6.2 ± 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95.0</td>
<td>8.0 ± 0.2</td>
<td>0.61 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>142.5</td>
<td>9.5 ± 0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>190.0</td>
<td>12.9 ± 0.3</td>
<td></td>
</tr>
<tr>
<td>4.30</td>
<td>47.5</td>
<td>14.4 ± 0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95.0</td>
<td>22.4 ± 0.6</td>
<td>0.60 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>142.5</td>
<td>36 ± 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>190.0</td>
<td>44 ± 3</td>
<td></td>
</tr>
<tr>
<td>4.75</td>
<td>47.5</td>
<td>23.7 ± 0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95.0</td>
<td>36 ± 1</td>
<td>0.65 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>142.5</td>
<td>45 ± 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>190.0</td>
<td>59 ± 2</td>
<td></td>
</tr>
<tr>
<td>5.82</td>
<td>47.5</td>
<td>58 ± 2</td>
<td>0.74 ± 0.08</td>
</tr>
<tr>
<td>6.27</td>
<td>47.5</td>
<td>138 ± 7</td>
<td>0.94 ± 0.02</td>
</tr>
<tr>
<td>6.73</td>
<td>47.5</td>
<td>270 ± 10</td>
<td>0.98 ± 0.03</td>
</tr>
<tr>
<td>11.73</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2009
Fig. S7 HPLC chromatogram of a reaction solution of the hydrolysis of 1a and 1b [Hypersil-Keystone Aquasil C18 column (4 × 150 mm, 5 μm); flow rate = 1 mL min⁻¹; 60 mM formate buffer (pH = 3.0) and a linear gradient of 3→30% MeCN during 40 min].