Enantioselective Construction of Lactone[2,3-\textit{b}]piperidine Skeletons via Organocatalytic Tandem Reactions

Zhao-Quan He,a,b Bo Han,b Rui Li,*a Li Wu,b and Ying-Chun Chen*a,b

a State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
b Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Fax: 86 28 85502609; E-mail: ycchenhuaxi@yahoo.com.cn.

Supplementary Information

Table of Contents
1. General methods
2. Enantioselective construction of lactone[2,3-\textit{b}]piperidine skeletons
3. NMR spectra and HPLC chromatograms
1. General methods

NMR data was obtained for 1H at 400 MHz, and for 13C at 50 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl$_3$ solution. ESI HRMS was recorded on a Bruker Apex-2. In each case, enantiomeric ratio was determined by HPLC analysis on chiral column in comparison with authentic racemate, using a Daicel Chiralpak OD-H Column (250 x 4.6 mm) or Chiralpak AD-H Column (250 x 4.6 mm). UV detection was monitored at 254 nm. Optical rotation data were examined in EtOH solution at 20 °C. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I$_2$ were used to visualize products. All chemicals were used without purification as commercially available unless otherwise noted. The N-Tos-1-aza-1,3-butadienes were prepared from α,β-unsaturated ketones and p-toluenesulfonylamide according to the literature procedures.1 The catalyst was synthesized according to the literature procedures.2

2. Enantioselective construction of lactone[2,3-b]piperidine skeletons

Aqueous glutaraldehyde 2a (0.20 mmol) was added to a mixture of catalyst 1 (0.01 mmol), N-Tos-1-aza-1,3-butadiene 3 (0.10 mmol) and benzoic acid (0.01 or 0.10 mmol) in acetonitrile (1 mL) or dichloromethane (1 mL) at room temperature. The reaction mixture was stirred until complete consumption of 3 (monitored by TLC). Then the solution was concentrated and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 6:1) to give hemiacetal 4, which was dissolved with DMSO. To this solution was added 2-iodoxybenzoic
acid (IBX) at 35 ºC and stirred until hemiacetal 4 disappeared. The mixture was partitioned between ethyl acetate and saturated NaHCO3. The organic phase was washed by brine, dried and concentrated. Flash chromatography (silica gel, 8:1-6:1 petroleum ether/ethyl acetate as eluent) afforded lactone 5. An identical procedure was used for the preparation of 6. The enantiomeric excess (ee) was determined by chiral HPLC analysis.

51% yield; HPLC (Chiralpak AD-H, 40% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_major = 9.70 min, t_minor = 11.20 min. ee > 99%; [α]D20 = -6.5 (c = 0.65 in EtOH); 1H NMR (400 MHz, CDCl3): δ = 7.36-7.32 (m, 2H), 7.25-7.20 (m, 1H), 7.17-7.13 (m, 2H), 7.12-7.10 (m, 4H), 6.42 (d, J = 3.2 Hz, 1H), 5.33 (d, J = 4.0 Hz, 1H), 4.20 (q, J = 6.8 Hz, 2H), 3.14 (dd, J = 4.0 Hz, J = 10.4 Hz, 1H), 2.80-2.75 (m, 1H), 2.73-2.64 (m, 1H), 2.62-2.55 (m, 1H), 2.41 (s, 3H), 2.33-2.23 (m, 1H), 1.92-1.84 (m, 1H), 1.27 (t, J = 6.8 Hz, 3H) ppm; 13C NMR (50 MHz, CDCl3): δ = 170.6, 170.0, 144.1, 136.6, 136.1, 129.4, 128.4, 128.2, 127.5, 127.3, 112.6, 84.4, 61.6, 40.8, 31.8, 25.7, 22.1, 21.5, 14.1 ppm; ESI HRMS: calcd. For C24H25NO6S+H 456.1481, found 456.1483.

53% yield; HPLC (Chiralpak AD-H, 40% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_major = 10.41 min, t_minor = 12.03 min. ee > 99%; [α]D20 = -7.6 (c = 0.64 in EtOH); 1H NMR (400 MHz, CDCl3): δ = 7.38-7.36 (m, 2H), 7.21-7.19 (m, 2H), 7.11-7.06 (m, 4H), 6.38 (d, J = 3.2 Hz, 1H), 5.33 (d, J = 3.6 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.12 (dd, J = 4.0 Hz, J = 10.4 Hz, 1H), 2.75-2.70 (m, 1H), 2.69-2.63 (m, 1H), 2.61-2.55 (m, 1H), 2.42 (s, 3H), 2.33-2.22 (m, 1H), 1.91-1.84 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (50 MHz, CDCl3): δ = 170.4, 169.9, 144.5, 136.5, 135.7, 134.7, 134.3, 129.8, 129.5, 127.8, 127.4, 113.1, 84.3, 61.8, 40.8, 31.8, 25.7, 22.1, 21.6, 14.1 ppm; ESI HRMS: calcd. For C24H24ClNO6S+H 490.1091, found 490.1087.

54% yield; HPLC (Chiralpak AD-H, 40% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_major = 10.75 min, t_minor = 12.58 min. ee = 99%; [α]D20 = -8.7 (c = 0.95 in EtOH); 1H NMR (400 MHz, CDCl3): δ = 7.37-7.35 (m, 2H), 7.26-7.24 (m, 2H), 7.21-7.19 (m, 2H), 7.02-7.00 (m, 2H), 6.38 (d, J = 2.8 Hz, 1H), 5.33 (d, J = 3.6 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.11 (dd, J = 4.0 Hz, J = 10.4 Hz, 1H), 2.75-2.70 (m, 1H), 2.69-2.63 (m, 1H), 2.61-2.54 (m, 1H), 2.43 (s, 3H), 2.32-2.22 (m, 1H), 1.91-1.84 (m, 1H), N O Tos COOEt 5a N O Tos COOEt 5b Br N O Tos COOEt 5c
1.28 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (50 MHz, CDCl3): δ = 170.4, 169.8, 144.5, 136.5, 135.7, 135.1, 130.7, 130.0, 129.6, 127.4, 122.6, 113.1, 84.3, 61.8, 40.8, 31.8, 25.7, 22.1, 21.6, 14.1 ppm; ESI HRMS: calcd. For C24H24BrNO6S+H 534.0586, found 534.0562.

46% yield; HPLC (Chiralpak AD-H, 40% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_major = 11.54 min, t_minor = 14.79 min. ee > 99%; [α]D 20 = +13.1 (c = 0.58 in CHCl3); 1H NMR (400 MHz, CDCl3): δ = 7.37-7.35 (m, 2H), 7.18-7.16 (m, 2H), 7.07-7.03 (m, 2H), 6.66-6.62 (m, 2H), 6.43 (d, J = 3.2 Hz, 1H), 5.25 (d, J = 3.6 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.78 (s, 3H), 3.12 (dd, J = 4.0 Hz, J = 10.4 Hz, 1H), 2.78-2.72 (m, 1H), 2.69-2.63 (m, 1H), 2.61-2.55 (m, 1H), 2.40 (s, 3H), 2.32-2.25 (m, 1H), 1.90-1.83 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (50 MHz, CDCl3): δ = 170.7, 170.0, 159.6, 143.9, 136.8, 136.3, 129.9, 129.3, 128.5, 127.4, 112.8, 111.5, 84.4, 61.6, 55.2, 40.8, 31.9, 25.7, 21.5, 14.1 ppm; ESI HRMS: calcd. For C25H27NO7S+H 486.1586, found 486.1572.

51% yield; HPLC (Chiralpak AD-H, 40% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_major = 10.95 min, t_minor = 13.18 min. ee = 97%; [α]D 20 = -20.8 (c = 2.73 in EtOH); 1H NMR (400 MHz, CDCl3): δ = 7.48-7.46 (m, 2H), 7.21-7.19 (m, 2H), 7.17-7.15 (m, 1H), 6.81-6.78 (m, 2H), 6.41 (d, J = 2.8 Hz, 1H), 5.47 (d, J = 4.0 Hz, 1H), 4.19 (q, J = 7.2 Hz, 1H), 3.14 (dd, J = 4.0 Hz, J = 10.4 Hz, 1H), 2.83-2.78 (m, 1H), 2.77-2.64 (m, 1H), 2.62-2.55 (m, 1H), 2.41 (s, 3H), 2.32-2.26 (m, 1H), 1.91-1.85 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (50 MHz, CDCl3): δ = 170.3, 169.9, 144.2, 137.2, 136.6, 130.0, 129.5, 128.6, 127.4, 126.3, 126.2, 113.5, 84.3, 61.8, 41.0, 31.7, 25.8, 22.1, 21.6, 14.1 ppm; ESI HRMS: calcd. For C22H23NO6S2+H 462.1045, found 462.1064.

50% yield; HPLC (Chiralpak AD-H, 40% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_major = 9.46 min, t_minor = 14.34 min. ee = 99%; [α]D 20 = +50.2 (c = 1.08 in EtOH); 1H NMR (400 MHz, CDCl3): δ = 8.02-8.00 (m, 2H), 7.39-7.30 (m, 5H), 7.18-7.16 (m, 2H), 6.30 (d, J = 3.6 Hz, 1H), 5.91 (d, J = 2.4 Hz, 1H), 4.28-4.20 (m, 2H), 3.26 (dd, J = 3.2 Hz, J = 10.8 Hz, 1H), 2.66-2.61 (m, 2H), 2.46 (s, 3H), 2.44-2.40 (m, 1H), 2.00-1.95 (m, 1H), 1.78-1.71 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H) ppm; 13C NMR (50 MHz, CDCl3):
δ = 169.6, 163.5, 144.6, 138.8, 135.9, 129.7, 129.1, 128.4, 127.9, 127.6, 126.2, 84.3, 61.7, 40.1, 36.2, 25.6, 21.6, 20.0, 13.9 ppm; ESI HRMS: calcd. For C_{24}H_{25}NO_{6}S+H 456.1481, found 456.1488.

45% yield; HPLC (Chiralpak AD-H, 40% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{major} = 9.41 min, t_{minor} = 12.13 min. ee = 98%; [α]D^{20} = +61.9 (c = 0.82 in EtOH); ^1H NMR (400 MHz, CDCl_3): δ = 8.02-8.00 (m, 2H), 7.50-7.48 (m, 2H), 7.39-7.37 (m, 2H), 7.08-7.05 (m, 2H), 6.24 (d, J = 3.2 Hz, 1H), 5.90 (d, J = 2.8 Hz, 1H), 4.28-4.19 (m, 2H), 3.23 (dd, J = 3.2 Hz, J = 11.2 Hz, 1H), 2.65-2.61 (m, 2H), 2.47 (s, 3H), 2.41-2.36 (m, 1H), 2.03-1.97 (m, 1H), 1.74-1.68 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H) ppm; ^13C NMR (50 MHz, CDCl_3): δ = 169.5, 163.4, 144.8, 138.0, 135.9, 132.3, 130.1, 129.8, 128.2, 127.7, 125.3, 121.9, 84.1, 61.8, 39.7, 36.3, 25.6, 21.7, 20.1, 13.9 ppm; ESI HRMS: calcd. For C_{24}H_{24}BrNO_{6}S+H 534.0586, found 534.0588.

42% yield; HPLC (Chiralpak AD-H, 40% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{major} = 11.36 min, t_{minor} = 18.57 min. ee > 99%; [α]D^{20} = +64.8 (c = 0.69 in CHCl_3); ^1H NMR (400 MHz, CDCl_3): δ = 8.02-8.00 (m, 2H), 7.38-7.36 (m, 2H), 7.09-7.07 (m, 2H), 6.89-6.87 (m, 2H), 6.27 (d, J = 3.6 Hz, 1H), 5.90 (d, J = 2.8 Hz, 1H), 4.27-4.19 (m, 2H), 3.81 (s, 3H), 3.21 (dd, J = 3.2 Hz, J = 11.2 Hz, 1H), 2.65-2.60 (m, 2H), 2.46 (s, 3H), 2.40-2.35 (m, 1H), 2.00-1.95 (m, 1H), 1.76-1.69 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H) ppm; ^13C NMR (50 MHz, CDCl_3): δ = 169.7, 163.6, 159.3, 144.6, 136.0, 130.6, 129.8, 129.4, 127.7, 127.6, 126.7, 114.5, 84.4, 61.7, 55.3, 39.4, 36.4, 25.7, 21.6, 20.1, 13.9 ppm; ESI HRMS: calcd. For C_{25}H_{27}NO_{7}S+H 486.1586, found 486.1590.

48% yield; HPLC (Chiralpak OD-H, 40% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, t_{minor} = 8.54 min, t_{major} = 11.37 min. ee = 98%; [α]D^{20} = -101.3 (c = 1.24 in CHCl_3); ^1H NMR (400 MHz, CDCl_3): δ = 7.45-7.41 (m, 4H), 7.23-7.17 (m, 5H), 7.16-7.12 (m, 2H), 6.93-6.91 (m, 2H), 6.43 (d, J = 2.4 Hz, 1H), 5.25 (d, J = 3.2 Hz, 1H), 3.25 (dd, J = 3.2 Hz, J = 10.8 Hz, 1H), 2.73-2.68 (m, 2H), 2.45 (s, 3H), 2.25-2.21 (m, 1H), 2.06-2.01 (m, 1H), 1.74-1.67 (m, 1H) ppm; ^13C NMR (50 MHz, CDCl_3): δ = 170.1, 144.3, 140.0, 136.6, 136.5, 135.8, 132.1, 131.6, 129.9, 129.6, 128.2, 127.6, 121.4, 119.4,
84.9, 40.5, 37.1, 25.7, 21.6, 20.4 ppm; ESI HRMS: calcd. For \(\text{C}_{27}\text{H}_{24}\text{BrNO}_{4}\text{S}+\text{H} \) 538.0688, found 538.0694.

45% yield; HPLC (Chiralpak OD-H, 40% 2-propanol/n-hexane, 1 mL/min), UV 220 nm, \(t_{\text{minor}} = 7.59 \text{ min}, t_{\text{major}} = 10.31 \text{ min}. \) ee = 90%; \([\alpha]_{D}^{20} = -98.2 \) (c = 0.59 in EtOH); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.40-7.38 \text{ (m, 2H)}, 7.23-7.11 \text{ (m, 7H)}, 6.31 \text{ (d, } J = 3.2 \text{ Hz, 1H)}, 5.22 \text{ (d, } J = 3.6 \text{ Hz, 1H)}, 2.70-2.61 \text{ (m, 1H)}, 2.59-2.52 \text{ (m, 1H)}, 2.41 \text{ (s, 3H)}, 2.21-2.13 \text{ (m, 2H)}, 1.88-1.83 \text{ (m, 1H)}, 1.82-1.78 \text{ (m, 1H)}, 1.06 \text{ (d, } J = 6.8 \text{ Hz, 3H}) \text{ ppm}; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)): \(\delta = 170.4, 143.9, 137.0, 136.8, 134.4, 129.3, 128.2, 127.8, 127.5, 122.1, 84.8, 36.9, 28.8, 25.9, 21.5, 21.2, 18.5 \text{ ppm}; \) ESI HRMS: calcd. For \(\text{C}_{22}\text{H}_{23}\text{NO}_{4}\text{S}+\text{H} \) 398.1426, found 398.1421.

40% yield; HPLC (Chiralpak OD-H, 40% 2-propanol/n-hexane, 1 mL/min), UV 254 nm, \(t_{\text{minor}} = 13.87 \text{ min}, t_{\text{major}} = 15.74 \text{ min}. \) ee = 99%; \([\alpha]_{D}^{20} = -79.5 \) (c = 1.02 in CHCl\(_3\)); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.24-7.16 \text{ (m, 3H)}, 7.06-6.99 \text{ (m, 5H)}, 6.96-6.93 \text{ (m, 2H)}, 5.88 \text{ (d, } J = 8 \text{ Hz, 1H)}, 4.37-4.22 \text{ (m, 2H)}, 4.20-4.06 \text{ (m, 1H)}, 3.33 \text{ (dd, } J = 1.6 \text{ Hz, } J = 8.4 \text{ Hz, 1H)}, 2.80-2.73 \text{ (m, 1H)}, 2.61-2.55 \text{ (m, 1H)}, 2.37 \text{ (s, 3H)}, 1.36 \text{ (t, } J = 7.2 \text{ Hz, 3H}) \text{ ppm}; \(^{13}\)C NMR (50 MHz, CDCl\(_3\)): \(\delta = 174.2, 170.1, 143.6, 141.7, 137.8, 134.3, 129.1, 128.5, 127.9, 127.8, 127.4, 117.3, 87.6, 62.2, 41.6, 40.6, 31.5, 21.5, 14.1 \text{ ppm}; \) ESI HRMS: calcd. For \(\text{C}_{23}\text{H}_{23}\text{NO}_{6}\text{S}+\text{H} \) 442.1324, found 442.1313.
3. NMR spectra and HPLC chromatograms

![NMR spectra and HPLC chromatograms]

Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2009
S8

Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2009

[Diagram of chemical structures and NMR spectra]

- Irradiation H_a at 6.42 ppm
- NOE H_b at 2.80 - 2.75 ppm
- No NOE H_c at 3.14 ppm

- No signal at 6.42 ppm
- Irradiation H_c at 3.14 ppm

NOE DS 6.42

NOE DS 3.14

[Diagram showing chemical structures and NMR spectra]
Supplementary Material (ESI) for Organic & Biomolecular Chemistry

racemate 6

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (V sec)</th>
<th>% Area</th>
<th>Height (V)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.775</td>
<td>47.60</td>
<td>331636</td>
<td>50.26</td>
</tr>
<tr>
<td>2</td>
<td>16.039</td>
<td>52.40</td>
<td>328159</td>
<td>49.74</td>
</tr>
</tbody>
</table>

6

<table>
<thead>
<tr>
<th>RT (min)</th>
<th>Area (V sec)</th>
<th>% Area</th>
<th>Height (V)</th>
<th>% Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.974</td>
<td>0.71</td>
<td>11083</td>
<td>1.05</td>
</tr>
<tr>
<td>2</td>
<td>15.741</td>
<td>99.29</td>
<td>1044741</td>
<td>98.95</td>
</tr>
</tbody>
</table>