BVMO-catalysed dynamic kinetic resolution of racemic benzylketones in presence of anion exchange resins

Cristina Rodríguez, a Gonzalo de Gonzalo, a Ana Ríoz-Martínez, a Daniel E. Torres Pazmiño, b Marco W. Fraaije, b and Vicente Gotor*, a

a Departamento de Química Orgánica e Inorgánica, Instituto de Biotecnología de Asturias, Universidad de Oviedo, c/ Julián Clavería 8, 33006, Oviedo, Spain.
e-mail: vgs@fq.uniovi.es

b Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Supporting Information

Contents

1. Characterization data of compounds .. S2
2. Experimental data .. S4
3. NMR Spectra .. S6
1. Characterization data of compounds.

\((S)-1\)-Phenylethyl acetate (1b, colourless oil). (38.2 mg, 69% yield); \(\delta_H\) (300.13 MHz, CDCl₃, Me₄Si) 1.56 (3H, d, \(J = 6.6\) Hz), 2.10 (3H, s), 5.91 (1H, q, \(J = 6.6\) Hz), 7.28-7.39 (5H, m); \(\delta_C\) (75.5 MHz, CDCl₃, Me₄Si) 20.9, 21.7, 71.8, 125.6, 125.7, 127.4, 128.0, 128.1, 141.2, 169.8; \(m/z\) (APCI⁺) 165 (M⁺H⁺, 100%). Determination of the ee by GC analysis: RTβDEXse, 70°C (5 min), 1°C/min, 120°C (5 min), \(t_R\) (R) 50.5 min; \(t_R\) (S) 42.9 min.

\((S)-1\)-(3-Methylphenyl)ethyl acetate (2b, colourless oil). (32.9 mg, 60% yield); \(\delta_H\) (300.13 MHz, CDCl₃, Me₄Si) 1.53 (3H, d, \(J = 6.6\) Hz), 2.08 (3H, s), 2.36 (3H, s), 5.85 (1H, q, \(J = 6.6\) Hz), 7.09-7.25 (4H, m); \(\delta_C\) (75.5 MHz, CDCl₃, Me₄Si) 21.3, 21.4, 22.1, 72.3, 123.0, 126.7, 128.3, 128.6, 138.1, 141.5, 170.3; \(m/z\) (EI⁺) 178 (M⁺, 28%), 136 (100%), 117 (91%). Determination of the ee by GC analysis: Chiralsil DexCB, 70°C, 1°C/min, 120°C (5 min), \(t_R\) (R) 32.7 min; \(t_R\) (S) 29.0 min.

\((S)-1\)-(3-Trifluoromethylphenyl)ethyl acetate (3b, colourless oil). (40.3 mg, 75% yield); \(\delta_H\) (300.13 MHz, CDCl₃, Me₄Si) 1.55 (3H, d, \(J = 6.8\) Hz), 2.10 (3H, s), 5.86 (1H, q, \(J = 6.6\) Hz), 7.47-7.61 (4H, m); \(\delta_C\) (75.5 MHz, CDCl₃, Me₄Si) 21.2, 22.2, 71.5, 122.7 (d, \(J = 3.76\) Hz), 124.0 (d, J 270.6 Hz), 124.6 (d, J 3.6 Hz), 128.9, 129.5, 130.9 (d, J 32.0 Hz), 142.7, 170.1; \(m/z\) (EI⁺) 232 (M⁺, 11%), 190 (90%). Determination of the ee by GC analysis: RTβDEXse, 100°C (20 min), 2°C/min, 150°C (5 min)., \(t_R\) (R) 22.8 min; \(t_R\) (S) 18.3 min.

\((S)-1\)-(4-Chlorophenyl)ethyl acetate (4b, yellow pale oil). (32.6 mg, 60% yield); \(\delta_H\) (300.13 MHz, CDCl₃, Me₄Si) 1.53 (3H, d, J 6.8 Hz), 2.10 (3H, s), 5.86 (1H, q, J 6.6 Hz), 7.28-7.36 (4H, m); \(\delta_C\) (75.5 MHz, CDCl₃, Me₄Si) 21.2, 22.1, 71.5, 127.4, 127.5, 128.6, 128.7, 133.5, 140.1, 170.1; \(m/z\) (ESI⁺) 221 (M⁺Na⁺, 100%). Determination of the ee by GC analysis: RTβDEXse, 110°C (10 min), 1°C/min, 140°C (5 min), \(t_R\) (R) 38.5 min; \(t_R\) (S) 34.6 min.

\((S)-1\)-Phenylethyl propionate (5b, colourless oil). (32.4 mg, 59% yield); \(\delta_H\) (300.13 MHz, CDCl₃, Me₄Si) 1.06 (3H, t, J 7.4 Hz), 1.45 (3H, d, J 6.6 Hz), 2.22-2.31 (2H, m), 5.81 (1H, q, J 6.6 Hz), 7.17-7.27 (5H, m); \(\delta_C\) (75.5 MHz, CDCl₃, Me₄Si) 9.0, 22.2, 27.8, 72.0, 126.0, 126.1, 127.7, 128.2, 128.3, 141.8, 173.6; \(m/z\) (APCI⁺) 179 (M⁺H⁺, 100%).
Determination of the ee by GC analysis: RtβDEXse, 70 ºC (5 min), 3ºC/ min, 200 ºC (5 min): $t_R (R) 29.3$ min; $t_R (S) 28.9$ min.

(S)-1-Phenylpropyl acetate (6b, colourless oil): (34.6 mg, 63% yield); δ_H (300.13 MHz, CDCl$_3$, Me$_4$Si) 0.88 (3H, t, $J 7.4$ Hz), 1.81-1.95 (2H, m), 2.08 (3H, s), 5.67 (1H, t, $J 6.9$ Hz), 7.28-7.37 (5H, m); δ_C (75.5 MHz, CDCl$_3$, Me$_4$Si) 9.8, 21.2, 29.2, 77.3, 126.5, 126.6, 127.7, 128.3, 128.4, 140.4, 170.4; m/z (APCI$^+$) 179 (M+H$^+$, 100%).

Determination of the ee by GC analysis: RtβDEXse, 110 ºC isotherm: $t_R (R) 26.6$ min; $t_R (S) 23.7$ min.

(S)-1-Phenylbutyl propionate (7b, yellow pale oil). (20.6 mg, 38% yield); δ_H (300.13 MHz, CDCl$_3$, Me$_4$Si) 0.85 (3H, t, $J 7.2$ Hz), 1.07 (3H, t, $J 7.4$ Hz), 1.15-1.34 (2H, m), 1.61-1.73 (1H, m), 1.77-1.90 (1H, m), 2.24-2.33 (2H, m), 5.69 (1H, t, $J 7.0$ Hz), 7.20-7.28 (5H, m); δ_C (75.5 MHz, CDCl$_3$, Me$_4$Si) 9.1, 13.7, 18.7, 27.8, 38.5, 75.6, 126.4, 126.5, 128.2, 128.3, 140.9, 173.7; m/z (ESI$^+$) 229 (M$^+$+Na, 100%).

Determination of the ee by GC analysis: Hydrodex β-TBOAc, 50 ºC (10 min), 1ºC/min, 120ºC (5 min): $t_R (R) 78.4$ min; $t_R (S) 78.8$ min.
2. Experimental data.

Racemisation experiments were performed by dissolving optically active 3-phenylpentan-2-one (R)-1a (10 mM) isolated from the preparative kinetic resolution of (±)-1a performed at pH 8.0 and 20ºC with HAPMO, in Tris/HCl buffer containing the anion exchange resins at the selected conditions (pH and temperature). The solution was shaken for different reaction times and aliquots were taken, extracted with ethyl acetate, dried onto Na₂SO₄ and analyzed by GC in order to determine the enantiomeric excesses. Results are summarized in Figure 1.

![Figure 1](image-url)

Figure 1. Racemisation of ketone (R)-1a (10 mM) when dissolved in different reaction media: Tris/HCl pH 8.0 (◊), Tris/HCl pH 10.0 (□) and Tris/HCl pH 10.0 containing: Amberlite IRA-440C (△), Lewatit MP62 (■) or Dowex MWA-1 (○).

Racemisation is supposed to be a pseudo-first order reaction. Relative initial rate constants (k_{rac}) were determined from the enantiomeric excesses of ketone 1a according to Equation 1:

\[
\text{ee (t)} = \text{ee (0)} e^{-2(k_{rac})t}
\]

were \(\text{ee (t)}\) is the enantiomeric excess of 1a at the time established, \(\text{ee (0)}\) the initial optical purity of 1a, \(k_{rac}\) is the relative initial racemisation constant and \(t\) is the time of measurement.

Racemisation studies were also performed with optically pure (S)-1-phenylethyl acetate (S)-1b. This compound was dissolved in Tris/HCl buffer at different reaction conditions (pH and anion exchange resins). The solution was shaken for different reaction times.
and aliquots were taken, extracted with ethyl acetate, dried onto Na₂SO₄ and analyzed by GC in order to determine the enantiomeric excesses. No change in optical purity of (S)-1b was observed after 120 h at all the conditions tested.
3. NMR Spectra

(±)-1b
(±)-1b
(±)-2b
(±)-2b
(±)-3b
(±)-4b
(±)-5b

(ppm)
(±)-5b
(±)-6b
(±)-7b
(±)-7b
(±)-7b