Electronic Supplementary Information

Imidazolidinone Intermediates in Prolinamide-Catalyzed Aldol Reactions

Ángel L. Fuentes de Arriba,* Luis Simón,† César Raposo,‡ Victoria Alcázar,§ Francisca Sanz,∥ Francisco M. Muñiz,* and Joaquín R. Morán**

* Departamento de Química Orgánica, Universidad de Salamanca, Plaza de los Caídos 1-5, E-37008 Salamanca, Spain. Fax: +34 923294574; Tel: +34 923294481 Email: romoran@usal.es
† Departamento de Ingeniería Química, Universidad de Salamanca, Plaza de los Caídos 1-5, E-37008 Salamanca, Spain
‡ Servicio de Espectrometría de Masas, Universidad de Salamanca, Plaza de los Caídos 1-5, E-37008 Salamanca, Spain
§ Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
∥ Servicio de Rayos X, Universidad de Salamanca, Plaza de los Caídos 1-5, E-37008 Salamanca, Spain

TABLE OF CONTENTS:

1. General Information S2
2. General Procedure for Aldol Reactions S2
3. Selected NMR Spectra (Figures S1-S20) S4
4. Competitive titration (Figure S21) S25
5. New compounds (1H and 13C NMR spectra, Figures S22-S25) S26
1. General Information

1H spectra were recorded at room temperature at 400 and 200 MHz and 13C NMR were recorded at 100 and 50 MHz. Chemical shifts (δ) are given in ppm with the solvent signal as internal standard (CHCl$_3$, 7.26 ppm for 1H NMR, CDCl$_3$, 77.0 ppm for 13C NMR; CH$_3$COCH$_3$, 2.05 ppm for 1H NMR, CD$_3$COCD$_3$, 205.1 ppm for 13C NMR; CH$_3$OH, 3.31 ppm for 1H NMR, CD$_3$OD, 49.0 ppm for 13C NMR) and coupling constants are reported in Hz. The following abbreviations were used to explain the multiplicities: s, singlet; d, doublet; t, triplet; m, multiplet.

Melting points are uncorrected. Optical rotations were determined for solutions in chloroform. IR were recorded as films. Mass spectra were obtained using electron impact (EI) or electron spray techniques (ESI).

Suitable single crystals of the 4, 10a and 10b compounds were mounted on glass fibre for data collection on a Bruker Kappa APEX II CCD diffractometer. Data were collected at 298 K using Cu K$_\alpha$ radiation ($\lambda = 1.54178$ Å) and ω scan technique, and were corrected for Lorentz and polarization effects. Structure solution, refinement and data output were carried out with the SHELXTL™ program package. The structures were solved by direct methods combined with difference Fourier synthesis and refined by full-matrix least-squares procedures, with anisotropic thermal parameters in the last cycles of refinement for all non-hydrogen atoms. H atoms of SP3 hybridized carbons were located directly in a difference Fourier map and freely refined. The rest of the hydrogen atoms were positioned geometrically. Crystallographic data (excluding structure factors) for the structures reported in this paper has been deposited at the Cambridge Crystallographic Data Centre as supplementary material nº. CCDC 741181-741183.

Reagents were purchased at the highest commercial quality and used without further purification unless otherwise noted.1

Analytical thin layer chromatography was performed using pre-coated aluminium-backed plates and visualized by UV. For column chromatography silica gel (70-200 µm) was used.

The enantiomeric excess (ee) of the products was determined by chiral HPLC in an Agilent 1100 HPLC. Detection was done by UV at 210 nm. A Daicel Chiralpak IC column was used, with a length of 250 mm, and a width of 4.6 mm. Hexane/isopropanol 8:2 was used as eluent.

2. General Procedures

A. Reaction of acetone and 4-nitrobenzaldehyde

Aldol reaction in deuteroacetone: 4-nitrobenzaldehyde (60.65 mg, 0.4 mmol) and aniline prolinamide 1 (76.55 mg, 0.4 mmol) were dissolved in CD$_3$COCD$_3$ (0.4 cm3, 5.44 mmol) at room temperature. The reaction was monitored by 1H NMR.

Aldol reaction in deuterochloroform: 4-nitrobenzaldehyde (75.28 mg, 0.5 mmol), aniline prolinamide 1 (94.15 mg, 0.5 mmol) and acetone (0.037 cm3, 0.5 mmol) were dissolved in 0.463 cm3 of CDCl$_3$ at room temperature. The reaction was monitored by 1H NMR.

B. Reaction of acetone imidazolidinone 4 and 4-nitrobenzaldehyde

Aldol reaction in deuteroacetone: 4-nitrobenzaldehyde (37.75 mg, 0.25 mmol) and acetone imidazolidinone 4 (57.50 mg, 0.25 mmol) were dissolved in 0.5 cm3 of deuteroacetone at room temperature. The reaction was monitored by 1H NMR.

Aldol reaction in deuteroacetone: 4-nitrobenzaldehyde (76.45 mg, 0.51 mmol) and acetone imidazolidinone 4 (116.83 mg, 0.51 mmol) were dissolved in 0.5 cm3 of deuteroacetone at room temperature. The reaction was monitored by 1H NMR.

1 4-Nitrobenzaldehyde was purified by sublimation.
C. Reaction of acetone and 4-nitrobenzaldehyde in presence of trifluoroacetic acid catalyzed by compounds 1, 12-16
4-nitrobenzaldehyde (51.3 mg, 0.34 mmol), catalyst (0.034 mmol) and trifluoroacetic acid (2.6 cm³, 0.034 mmol) were dissolved in deuterioacetone (0.5 cm³) at room temperature. The reaction was monitored by ¹H NMR and the enantiomeric excesses were determined by HPLC analysis from the reaction mixture.

D. Reaction between butyraldehyde and prolinamide 1
Aniline prolinamide 1 (9.58 mg, 0.05 mmol) and butyraldehyde (4.5 cm³, 0.05 mmol) were dissolved in CDCl₃ (0.5 cm³) at room temperature. The reaction was monitored by ¹H NMR.

E. Reaction between pyrrolidine cyclohexanone enamine and 4-nitrobenzaldehyde
Pyrrolidine cyclohexanone enamine² (11.25 mg, 0.075 mmol) and 4-nitrobenzaldehyde (11.33 mg, 0.075 mmol) were dissolved in CDCl₃ (0.45 cm³) at room temperature. The reaction was monitored by ¹H NMR.

Figure S1. 1H NMR (200MHz, CDCl$_3$) spectrum of the aldol product 3 of the reaction between acetone and 4-nitrobenzaldehyde.
Figure S2. Chemical shifts for some relevant protons in acetone imidazolidinone 4 compared to prolinamide 1.
Figure S3. 1H NMR spectrum of the reaction between acetone (solvent) and 4-nitrobenzaldehyde catalyzed by prolinamide 1, after 5 hours (corresponds to Scheme 1).
Figure S4. Aldol imidazolidinones 5a and 5b as intermediates in aldol condensation between acetone (solvent) and 4-nitrobenzaldehyde (×) catalyzed by prolinamide 1: 1H NMR spectra at different times.

$t = 20$ h

5b and 4-nitrobenzaldehyde are no longer detected

$t = 3$ h

Aldol 3, 4-nitrobenzaldehyde, imidazolidinone 4 and aldol imidazolidinones 5a and 5b
Figure S5. 1H NMR spectrum of the reaction between acetone (solvent) and 4-nitrobenzaldehyde catalyzed by prolinamide 1, after 2 weeks (corresponds to Scheme 1).
Figure S6. COSY spectrum (region 1.5-8.0 ppm) of acetone imidazolidinone 4 in deuteroacetone.
Figure S7. HMQC spectrum of acetone imidazolidinone 4 in deuteroacetone.
Figure S8. ROESY spectrum of acetone imidazolidinone 4 in deuteracetone.
Figure S9. 13C NMR spectrum of the reaction mixture corresponding to aldol condensation between acetone and 4-nitrobenzaldehyde catalyzed by prolinamide 1, after 3 hours. Signals for the aldol imidazolidinones 5a and 5b are shown.
Figure S10. 13C NMR spectrum of the reaction mixture corresponding to aldol condensation between acetone and 4-nitrobenzaldehyde catalyzed by prolinamide 1, after 20 hours. Signals for the aldol imidazolidinone 5a and acetone imidazolidinone 4 are shown.
Figure S11. 13C NMR assignments (tentative) for aldol imidazolidinones 5a and 5b.
Figure S12. 1H NMR spectra (region 4.4 ppm-0.6 ppm) at different times for the reaction between prolinamide 1 and 4-nitrobenzaldehyde in deuterioacetone in which it is shown the different deuteration process of imidazolidinone 4 (Scheme 2).
Figure S13. 1H NMR spectra (200 MHz, region 3.6 ppm-6.2 ppm) at different times for the reaction corresponding to Scheme 3 (reaction of the prolinamide I with n-butyraldehyde in deuterochloroform).
Figure S14. 1H NMR spectrum of the reaction between acetone and 4-nitrobenzaldehyde in CDCl$_3$ catalyzed by prolinamide 1 after 5 minutes (corresponds to Scheme 4).
Figure S15. 1H NMR spectrum of the reaction between acetone and 4-nitrobenzaldehyde in CDCl$_3$ catalyzed by prolinamide 1 after 9 days (corresponds to Scheme 4).
Figure S16. 1H NMR spectrum for the mixture of imidazolidinones 10a and 10b formed in the reaction between 4-nitrobenzaldehyde and prolinamide 1 in CDCl$_3$ after nine days.
Figure S17. Chemical shifts for some relevant protons in aldehyde imidazolidinone 10a compared to prolinamide 1.
Figure S18. 1H NMR spectrum for the reaction mixture of aldol 3 with prolinamide 1 in deuterchloroform (68 h).

Complex mixture:
- acetone imidazolidinone 4 (●)
- aldehyde imidazolidinones 10a, 10b (▲, ▼)
- aldol imidazolidinone 5a (×)
- 4-nitrobenzaldehyde, acetone
Figure S19. 1H NMR spectra of the reaction between pyrrolidine cyclohexanone enamine and 4-nitrobenzaldehyde in deuterochloroform.

$t= 15$ hours

$t= 2$ minutes
Figure S20. 1H NMR spectra of the reaction between imidazolidinone 4 (0.5M) and 4-nitrobenzaldehyde (0.5M) in deuteromethanol at different times (t_1<t_2) showing deuteration exchange.
Figure S21. Competitive titration of a mixture of acetone imidazolidinone 4 and aniline prolinamide 1 with camphorsulfonic acid in deuterochloroform.

Relative constant: 1e+04 1/M
Max. Chemical Shift (H-7, 4): 5.0548
Max. Chemical Shift (H-2, 1): 4.8731

<table>
<thead>
<tr>
<th>H-2 prolinamide 1</th>
<th>H-7 imidazolidinone 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9786</td>
<td>4.053</td>
</tr>
<tr>
<td>4.1633</td>
<td>4.053</td>
</tr>
<tr>
<td>4.2015</td>
<td>4.053</td>
</tr>
<tr>
<td>4.2425</td>
<td>4.053</td>
</tr>
<tr>
<td>4.307</td>
<td>4.053</td>
</tr>
<tr>
<td>4.3598</td>
<td>4.053</td>
</tr>
<tr>
<td>4.439</td>
<td>4.053</td>
</tr>
<tr>
<td>4.5387</td>
<td>4.053</td>
</tr>
<tr>
<td>4.6707</td>
<td>4.053</td>
</tr>
<tr>
<td>4.8319</td>
<td>4.1018</td>
</tr>
<tr>
<td>4.8613</td>
<td>4.1106</td>
</tr>
<tr>
<td>4.8801</td>
<td>4.1481</td>
</tr>
<tr>
<td>4.873</td>
<td>4.1633</td>
</tr>
<tr>
<td>4.873</td>
<td>4.1833</td>
</tr>
<tr>
<td>4.873</td>
<td>4.1833</td>
</tr>
<tr>
<td>4.873</td>
<td>4.2501</td>
</tr>
<tr>
<td>4.873</td>
<td>4.3422</td>
</tr>
<tr>
<td>4.873</td>
<td>4.3921</td>
</tr>
<tr>
<td>4.873</td>
<td>4.4501</td>
</tr>
<tr>
<td>4.873</td>
<td>4.6267</td>
</tr>
<tr>
<td>4.873</td>
<td>4.9267</td>
</tr>
<tr>
<td>4.873</td>
<td>5.0220</td>
</tr>
<tr>
<td>4.873</td>
<td>5.0548</td>
</tr>
</tbody>
</table>
Figure S22. 1H NMR and 13C spectra of imidazolidinone 4
Figure S23. 1H NMR and 13C spectra of imidazolidinone 10a
Figure S24. 1H NMR and 13C spectra of imidazolidinone 10b
Figure S25. 1H NMR and 13C spectra of imidazolidinone 7b