
Wing-Yan Wong, Ken Cham-Fai Leung, J. Fraser Stoddart

a Center of Novel Functional Molecules, Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
Fax: (+852) 2603-5057
E-mail: cfleung@cuhk.edu.hk

b Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
Fax: (+1) 847-491-1009
E-mail: stoddart@northwestern.edu

Supplementary Information
Fig. S1. ESI-mass spectrum of R-H·PF₆ showing a [M–PF₆]⁺ molecular ion peak.

Fig. S2. UV/visible spectra (conc. = 0.02 mM in MeCN).
Fig. S3. Fluorescence emission spectra (excitation wavelength = 290 nm) of components in the presence of excess H$_2$O (conc. = 0.02 mM in MeCN).

Fig. S4. Fluorescence emission spectra (excitation wavelength = 290 nm) of components (conc. = 0.02 mM in MeCN).
Fig. S5. Fluorescence emission spectra (excitation wavelength = 290 nm) of components (conc. = 0.02 mM in MeCN).

Fig. S6. Fluorescence emission spectra (excitation wavelength = 290 nm) of components (conc. = 0.02 mM in MeCN).
Fig. S7. A plot of the reciprocal of rotaxane R-H·PF₆ concentration (M⁻¹) in CD₃CN versus time (h). The activations within first one hour can be fitted into straight lines, leading to second order kinetics.

Fig. S8. Partial ¹H NMR spectrum (400 MHz, CD₃CN, 295 K) of R-H·PF₆ in the presence of excess of HCl/Et₂O (0.1 M) (f = free).
Fig. S9. Partial 1H NMR spectrum (400 MHz, CD$_3$CN, 295 K) of $\textbf{R-H-PF}_6$ in the presence of 2 equiv. of toluidine ($f = \text{free}$).

Fig. S10. Stacked fluorescence emission of rotaxane $\textbf{R-H-PF}_6$ with different amounts of HPF$_6$/H$_2$O (0.1 M).
Fig. S11. Fluorescence emission spectra (excitation wavelength = 290 nm) of components (conc. = 0.02 mM in MeCN).

Fig. S12. Fluorescence emission spectra (excitation wavelength = 290 nm) of Amine 1 (conc. = 0.02 mM in MeCN).
Fig. S13. Fluorescence emission spectra (excitation wavelength = 290 nm) of rotaxane R-H·PF₆ (conc. = 0.02 mM in MeCN).

Fig. S14. Fluorescence emission spectra (excitation wavelength = 290 nm) of components (conc. = 0.02 mM in MeCN).
Fig. S15. Fluorescence emission spectra (excitation wavelength = 290 nm) of components (conc. = 0.02 mM in MeCN).

Fig. S16. Fluorescence emission spectra (excitation wavelength = 290 nm) of components (conc. = 0.02 mM in MeCN).
1H NMR (400 MHz, CDCl$_3$, 296 K) spectrum of 1
13C NMR (101 MHz, CDCl$_3$, 296 K) spectrum of 1
1H NMR (400 MHz, CD$_3$CN, 296 K) spectrum of 1-H·PF$_6$
13C NMR (101 MHz, CD$_3$CN, 296 K) spectrum of 1-H·PF$_6$
1H NMR (400 MHz, CDCl$_3$, 295 K) spectrum of 4
13C NMR (101 MHz, CDCl$_3$, 295 K) spectrum of 4
1H NMR (400 MHz, CDCl$_3$, 295 K) spectrum of 7
13C NMR (101 MHz, CDCl$_3$, 296 K) spectrum of 7
1H NMR (400 MHz, CD$_3$CN, 295 K) spectrum of rotaxane R-H·PF$_6$
13C NMR (101 MHz, CD$_3$CN, 295 K) spectrum of rotaxane R-H·PF$_6$