“Magnesium ion enhances lanthanum-promoted monobenzoylation of a monosaccharide in water”

Electronic Supporting Information (Organic and Biomolecular Chemistry)

Raj S. Dhiman and Ronald Kluger*

Lash Miller and Davenport Laboratories,
Department of Chemistry, University of Toronto,
Toronto, Ontario M5S 3H6, Canada

rkluger@chem.utoronto.ca

Table of Contents:

Experimental Details..1-2

NMR Data for Preparative Scale
Reaction...3-6

HPLC Data for Analytical Scale
Reactions...7-14

References...15
General Methods and Materials

NMR Spectra were recorded on either a Mercury 300 MHz or Varian 400 MHz spectrometers. 1H-NMR spectra were recorded at either 300 or 400 MHz, 13C-NMR spectra at 100.5 MHz and 31P-NMR spectra at 121 MHz. Mass spectrometry was performed at the QStar Chemistry Mass Spectral Facility, University of Toronto.

Carbohydrate substrates were purchased and used without further purification except for Me-α-glucopyranose which was recrystallized from methanol. Acetone was dried over magnesium sulfate and filtered immediately before use. Benzoil methyl phosphate was prepared by the previously reported procedure.1

HPLC Analysis and Conditions

HPLC analysis was performed on C18 reversed-phase analytical columns (Waters μBondapak$^\text{TM}$ 3.9 mm × 300 mm) and preparative columns (Waters μBondapak$^\text{TM}$ 7.8 mm × 300 mm) using an isocratic gradient with a mobile phase of 10/90 (v/v) acetonitrile/water containing 0.1% trifluoroacetic acid (TFA) with a flow rate of 1.5 mL/min and effluent detection at 230 nm. Residual TFA from the mobile phase was removed by solid-phase extraction (PL-HCO3 MP SPE Tubes, Polymer Labs). From HPLC data, reagent efficiency can be calculated from peak areas: Area$_{ester}$(Area$_{ester}$ + Area$_{PhCOOH}$).

Procedures for analytical scale acylation reactions

Stock solutions (0.25 M) of metal salts were prepared in 0.1 M, pH = 8.0 EPPS buffer while stock solution of carbohydrate (0.125 M) was prepared with the same buffer. Fresh solutions of 0.125 M BMP in water was prepared for each set of reactions. Solutions of salts and sugars were added to a vial and to make a reaction volume 0.45 mL. Solutions were kept at room temperature for 15 minutes and then 0.050 mL of BMP solution was added to initiate the reaction. Carbohydrate and BMP concentrations in the reactions were fixed at 0.0125 M unless otherwise specified. Reactions were allowed to proceed at room temperature with mixing. Samples were analyzed as 0.050 mL aliquots to which 0.0150 mL of EDTA (pH = 8.0, 0.1 M) was added. Quenched solutions were then analyzed by HPLC. Regioselectivity was assessed by comparison to the reactions in our previous work.2,3

Procedure for preparative scale acylation reactions

Sugar (Ribose or me-α-glucopyranose) (1.25 mmol), magnesium triflate (1 mmol) and lanthanum triflate (0.125 mmol) were dissolved in EPPS buffer (pH = 8.0, 0.1 M) and stirred at room temperature for 15 minutes. BMP (1.25 mmol) was added and the reaction was stirred overnight. The reaction mixture was then quenched by the addition of an equal volume of an EDTA (pH = 8.0, 0.1 M) solution and stirred until all precipitate was dissolved. The reaction mixture was then frozen and lyophilized to yield a white solid. To the solid was added 20 mL of dry acetone and the solution was filtered. The filtrate was
passed through a Sep-Pak cartridge (Waters Florisil™, 500 mg) and the eluant was concentrated to give a white solid (crystallization with ethyl acetate was used to induce formation of the solid as needed). The solids were identified as mixtures of regioisomers based by preparative HPLC with comparison to previous work as described above.

We isolated the benzoates of me-α-glucopyranose from the preparative scale procedure in order to demonstrate that the site of acylation was not affected by the reduced amount of lanthanum. ¹H-NMR and ¹³C-NMR agree with those in the literature.²⁻⁵ In the ¹H-NMR spectra presented, there is an impurity peak due to water located at ~ 3.39 ppm. This is most likely due to residual water in the DMSO solvent, however it has been reported that benzoyl derivatives of me-α-glucopyranose can be isolated as hydrates and are liberated from water by recrystallization from ethanol.⁶
HPLC Data

Each reaction has carbohydrate and BMP concentrations as described in the experimental section for analytical scale reactions, concentration of La^{III} = 12.5 \times 10^{-3} \text{ M and Mg}^{II} = 0.1 \text{ M}. Chromatograms are taken after a 24 hr reaction time period. Chromatograms were obtained after passing the reaction mixture through a C-18 Sep-Pak cartridge to remove EDTA and metal salts. Regioselectivity was confirmed by ESI-MS identification of product peaks and comparison to previously published results.2,3

\[
\begin{array}{c}
\text{Me-α-Glucopyranose:}
\end{array}
\]

<table>
<thead>
<tr>
<th>Retention Time (Min)</th>
<th>Peak ID</th>
<th>Method of Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.77</td>
<td>Benzoic Acid</td>
<td>Comparison to Standard</td>
</tr>
<tr>
<td>17.41</td>
<td>2-OBz Ester</td>
<td>ESI-MS (321.1 M+Na+)</td>
</tr>
<tr>
<td>21.58</td>
<td>6-OBz Ester</td>
<td>ESI-MS (321.1 M+Na+)</td>
</tr>
</tbody>
</table>
Me-β-Glucopyranose:

\[
\begin{align*}
\text{Me-β-Glucopyranose} & \rightarrow \text{(3)} + \text{(4)} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Retention Time (Min)</th>
<th>Peak ID</th>
<th>Method of Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.67</td>
<td>2-OBz Ester</td>
<td>ESI-MS (321.1 M+Na(^+))</td>
</tr>
<tr>
<td>16.10</td>
<td>Benzoic Acid</td>
<td>Comparison to Standard</td>
</tr>
<tr>
<td>19.62</td>
<td>6-OBz Ester</td>
<td>ESI-MS (321.1 M+Na(^+))</td>
</tr>
</tbody>
</table>
Me-α-Galactopyranose:

Retention Time (Min)	Peak ID	Method of Identification
14.82 | 3-OBz Ester | ESI-MS (321.1 M+Na⁺)
16.10 | 2-OBz Ester | ESI-MS (321.1 M+Na⁺)
16.68 | 6-OBz Ester | ESI-MS (321.1 M+Na⁺)
22.17 | Benzoic Acid | Comparison to Standard
Me-β-Galactopyranose:

Retention Time (Min)	Peak ID	Method of Identification
11.28 | 3-OBz Ester | ESI-MS (321.1 M+Na⁺)
12.80 | 2-OBz Ester | ESI-MS (321.1 M+Na⁺)
17.10 | Benzoic Acid | Comparison to Standard
22.43 | 6-OBz Ester | ESI-MS (321.1 M+Na⁺)

Abs. (AU)

Time (Min)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0.2 0.4 0.6 0.8 1.0 1.2

Retention Time:

<table>
<thead>
<tr>
<th>Retention Time (Min)</th>
<th>Peak ID</th>
<th>Method of Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.28</td>
<td>3-OBz Ester</td>
<td>ESI-MS (321.1 M+Na⁺)</td>
</tr>
<tr>
<td>12.80</td>
<td>2-OBz Ester</td>
<td>ESI-MS (321.1 M+Na⁺)</td>
</tr>
<tr>
<td>17.10</td>
<td>Benzoic Acid</td>
<td>Comparison to Standard</td>
</tr>
<tr>
<td>22.43</td>
<td>6-OBz Ester</td>
<td>ESI-MS (321.1 M+Na⁺)</td>
</tr>
</tbody>
</table>
Me-α-Mannopyranose:

Retention Time (Min)	Peak ID	Method of Identification
14.20 | 2-OBz Ester | ESI-MS (321.1 M+Na⁺)
14.70 | 3-OBz Ester | ESI-MS (321.1 M+Na⁺)
15.68 | Benzoic Acid | Comparison to Standard
22.55 | 6-OBz Ester | ESI-MS (321.1 M+Na⁺)

D-Ribose:

Retention Time (Min)	Peak ID	Method of Identification
15.13 | 2-OBz Ester | ESI-MS (277.1 M+Na⁺)
16.12 | 3-OBz Ester | ESI-MS (277.1 M+Na⁺)
17.67 | 4-OBz Ester | ESI-MS (277.1 M+Na⁺)
22.85 | Benzoic Acid | Comparison to Standard
In order to confirm role of magnesium, a reaction was performed with lanthanum in the absence of magnesium. Reaction has ribose and BMP concentrations as described in the experimental section for analytical scale reactions with concentration of LaIII = 12.5 \times 10-3 M. Samples for HPLC were prepared and analyzed as described in the analytical scale procedure. Chromatograms were taken at 30 minute, 3 hour and 24 hour intervals; subsequent chromatograms showed no significant variation.

![Chromatogram](image-url)
References:

