Rhodamine-based Chemosensor for Hg^{2+} in Aqueous Solution with a Broad pH Range and Its Application in Live Cell Imaging

Yun Zhao, Yue Sun, Xin Lv, Yunlong Liu, Maliang Chen, and Wei Guo*

School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China. E-mail: guow@sxu.edu.cn

Electronic Supplementary Information (ESI†)

Contents

1. IR spectra of 1 and 1–Hg^{2+} complex in KBr disks (Fig. S1).
2. 1H NMR-titration experiments (Fig. S2).
3. Effects of water content on the fluorescence of 1–Hg^{2+} system (Fig. S3).
4. Time-dependent change in fluorescence intensity of 1 after Hg^{2+} addition (Fig. S4).
5. Determination of binding constant of the complex (Fig. S5 and Fig. S6).
6. Selectivity investigation by absorption spectra (Fig. S7).
7. Reversibility investigation by introduction of iodide anion (Fig. S8).
8. 1H NMR chart of 1 (Fig. S9).
9. 13C NMR chart of 1 (Fig. S10).
10. EI-MS chart of 1 (Fig. S11).
1. IR spectra of 1 and 1–Hg$^{2+}$ complex in KBr disks

![IR spectra of 1 and 1–Hg$^{2+}$ complex in KBr disks](image)

Fig. S1 IR spectra of 1 (a) and 1–Hg$^{2+}$ (b) were taken in KBr disks, respectively.

2. 1H NMR-titration experiments (Fig. S2).

![1H NMR-titration experiments](image)

Fig. S2 Hg$^{2+}$ 1H NMR-titration of 1 (10.0 mM) with Hg$^{2+}$ (5 equiv.) in CDCl$_3$.
3. Effects of water content on the fluorescence of 1–Hg$^{2+}$ system.

![Figure S3](image.png)

Fig. S3 Effects of water content on the fluorescence of 1–Hg$^{2+}$ system in aqueous acetonitrile solution. [$1] = 20 \text{ µM}$, [Hg$^{2+}$] = 100µM.

4. Time-dependent change in fluorescence intensity of 1 after Hg$^{2+}$ addition

![Figure S4](image.png)

Fig. S4 Time course of the response of 1 (20 µM) in MeCN-water solution (95/5, v/v, pH=7.2) upon addition of 5 equiv. of Hg(NO$_3$)$_2$.

5. Determination of binding constant of the complex

The data obtained from fluorescence titration profile were fitted to be a 1:1 binding model according to following equation.

$$
\Delta F = \frac{1}{2} \left\{ \alpha \left[H J_0 + [G] + \frac{1}{K} \right] - \sqrt{\frac{\alpha^2}{2} \left[[H J_0 + [G] + \frac{1}{K} \right]^2 - 4[H J_0][G]} \right\}
$$

The binding constant (K) is an important parameter, indicating the inclusion
capacity of the host-guest complex. The binding constants \((K) \) can thus be obtained by a nonlinear least's squares analysis of \(\Delta F \) versus \([\text{Hg}^{2+}]\), fitting to the experimental data obtained from the absorption and fluorescence titrations. Where \([\text{H}]_0\) and \([\text{G}]_0\) are the initial concentrations of host sensor 1 and guest \text{Hg}^{2+}, respectively. \(\Delta F \) denotes the change of the absorption and fluorescence intensity of sensor 1 with the addition of \text{Hg}^{2+}. \(\alpha \) is a sensitive factor of the structure change of the complex 1-Hg\(^{2+}\) at the interactive course \((\alpha = (F_{\text{max}}-F_0)/[\text{G}]_0) \).

Fig. S5 UV/VIS titration profile of 1 (20µM) in MeCN-water solution (95:5, v/v, Ph=7.2), from which the association constant was determined, \(K_a = 2.18 \times 10^6 \text{ M}^{-1} \) \((R^2 = 0.9916) \).

Fig. S6 Fluorescence titration profile (\(\lambda_{\text{em}} = 530 \text{ nm} \)) of 1 (20µM) in MeCN-water solution (95:5, v/v, Ph=7.2), from which the association constant was determined, \(K_a = 1.27 \times 10^6 \text{ M}^{-1} \) \((R^2 = 0.9898) \).
6. Selectivity investigation by absorption spectra

Fig. S7 (a) The absorption spectra of 1 (20 μM) upon addition of 100 μM of Hg²⁺ and various other metal ions in a MeCN-water solution (95/5, v/v, pH 7.2). (b) Absorption change of 1 (20 μM) to 100 μM of Hg²⁺ in a MeCN-water solution (95/5, v/v, pH 7.2) containing 100 μM of various metal ions.

7. Reversibility investigation by introduction of iodide anion.
Fig. S8 Reversibility of Hg$^{2+}$ coordination to probe 1 by I$^-$. Slash denotes the sequence of addition. [I] = 2.0 × 10$^{-5}$ M, in aqueous acetonitrile solution (95/5, v/v, pH=7.2). [Hg$^{2+}$](1st) = 1.0 × 10$^{-4}$ M, [I$^-$] = 4.0 × 10$^{-4}$ M, [Hg$^{2+}$] (2nd) = 6.0 × 10$^{-4}$ M, [I$^-$] = 2.4 × 10$^{-3}$ M, [Hg$^{2+}$](3rd) = 1.8 × 10$^{-3}$ M, [I$^-$] = 7.2 × 10$^{-2}$ M.
Fig. S9 1H NMR chart of 1 (CDCl$_3$, 300MHz)
Fig. S10 13C NMR chart of 1 (CDCl$_3$, 75MHz)
Fig. S11 EI-MS chart of 1