A new synthesis of fully phosphorylated flavones as potent pancreatic cholesterol esterase inhibitors

Guoping Peng, a Yidan Du, b Yingling Wei, b Jingming Tang, b Ai-Yun Peng,* b and Liqun Rao* a

a College of Bioscience and Biotechnology, Hunan Agricultural University, Furong District, Changsha, 410428, China.

b School of Chemistry & Chemical Engineering, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, 510275, China.

Fax: 86 20 84112245; Tel: 86 020 84110918; E-mail: cespay@mail.sysu.edu.cn

List of contents

Analytical data and graphs for determination of inhibitor IC50………………………S2–S4
References……………………………………………………………………………………………S4

1H / 13C / 31P NMR spectra of 2a………………………………………………………………………S5–S7
1H / 13C NMR spectra of 2b………………………………………………………………………………S8–S9
1H / 13C NMR spectra of 2c………………………………………………………………………………S10–S11
1H / 13C NMR / 31P spectra of 2d………………………………………………………………………S12–S14
1H / 13C / 31P NMR spectra of 2e………………………………………………………………………S15–S17
Analytical data and graphs for determination of inhibitor IC50
Compounds 1a–1e, 2a–2e were assayed according to the above procedure. The IC50 values are shown in Table 1, and Figures 1–7.

Table 1 Inhibitory effects on CEase of 1a–1e and 2a–2e

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50/nM</th>
<th>Compound</th>
<th>IC50/µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>3.89</td>
<td>1a</td>
<td>28.1</td>
</tr>
<tr>
<td>2b</td>
<td>26.1</td>
<td>1b</td>
<td>35.7</td>
</tr>
<tr>
<td>2c</td>
<td>3.76</td>
<td>1c</td>
<td>ni<sup>a</sup></td>
</tr>
<tr>
<td>2d</td>
<td>2.44</td>
<td>1d</td>
<td>ni</td>
</tr>
<tr>
<td>2e</td>
<td>390</td>
<td>1e</td>
<td>ni</td>
</tr>
</tbody>
</table>

^a ni, no inhibition at 100 µM.

Figure 1. Graph for determining IC50 value of 2a for CEase inhibition

Figure 2. Graph for determining IC50 value of 2b for CEase inhibition
Figure 3. Graph for determining IC50 value of 2c for CEase inhibition

Figure 4. Graph for determining IC50 value of 2d for CEase inhibition

Figure 5. Graph for determining IC50 value of 2e for CEase inhibition
Figure 6. Graph for determining IC50 value of $1a$ for CEase inhibition

Figure 7. Graph for determining IC50 value of $1b$ for CEase inhibition

References

1H NMR (300 MHz, CDCl$_3$) of 2a
13C NMR (75.4 MHz, CDCl$_3$) of 2a

![NMR spectrum image]
31P NMR (121 MHz, CDCl$_3$) of 2a
Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2011

1H NMR (300 MHz, CDCl$_3$) of 2b

![NMR spectrum of 2b](image)
13C NMR (75.4 MHz, CDCl$_3$) of 2b

![NMR spectrum and chemical structures](image)
1H NMR (300 MHz, CDCl$_3$) of 2c
13C NMR (75.4 MHz, CDCl$_3$) of 2c

![NMR Spectrogram](image)

(EO)$_2$(O)PO

(EO)$_2$(O)P = 2c
\(^1\)H NMR (300 MHz, CDCl\(_3\)) of 2d
13C NMR (75.4 MHz, CDCl$_3$) of 2d
(EtO)₂(O)PO₃d
13C NMR (75.4 MHz, CDCl$_3$) of 2e
31P NMR (121 MHz, CDCl$_3$) of 2e