Supporting Information

Study of Cavity Size and Nature of Bridging Units on Recognition of Nucleotides by Cyclophanes

Prakash P. Neelakandan, Paramjyothi C. Nandajan, Baby Subymol and Danaboyina Ramaiah*

Photosciences and Photonics, Chemical Sciences and Technology Division National Institute for Interdisciplinary Science and Technology (NIIST) CSIR, Trivandrum 695 019, INDIA Tel: +91 471 2515362; Fax: +91 471 2491712, 2490186 E-mail: rama@niist.res.in or d_ramaiah@rediffmail.com

Sl. No.		Page
1	Figure S1 showing relative changes in the absorbance of the different cyclophanes with the addition of various nucleosides and nucleotides	S2
2	Figure S2 showing changes in the emission spectrum of CP-1 with the addition of 5'–GTP and 5'–ATP	S 3
3	Figure S3 showing changes in the ¹ H NMR spectra of the CP-1 with the addition of $5'$ -ATP	S 3
4	Figure S4 showing changes in the absorption spectrum of HPTS with the addition of CP-1	S4
5	Figure S5 showing the changes in the emission spectrum of HPTS with the addition of CP-4	S4
6	Figure S6 showing changes in the fluorescence decay profile of HPTS in the presence of CP-2	\$5
7	Figure S7 showing effect of temperature on the emission spectrum of [CP–3 ·HPTS] in buffer	\$5
8	Figure S8 showing relative fluorescence quenching of HPTS by CP-4 at different salt concentrations	S 6
9	Figure S9 showing the changes in the emission spectrum of HPTS with the addition of OC-4	S 6
10	Figure S10 showing displacement of HPTS from [CP-2 ·HPTS] and [CP-3 ·HPTS] by 5'–GTP in buffer	S 7
11	Figure S11 showing displacement of HPTS from [CP-4·HPTS] by 5'-GTP in buffer	S 7
12	Figures S12–S16 showing ¹ H NMR spectra of CP–1 , CP–2 , CP–3 . CP–4 and OC–4	S8-S10

Figure S1. Relative changes in the absorbance of the different cyclophanes **CP–1**, **CP–2**, **CP–3** and **CP–4** with the addition of various nucleosides and nucleotides in phosphate buffer (10 mM, pH 7.4).

Figure S2. Changes in the emission spectrum of **CP-1** (11 μ M) with the addition of (A) 5'-GTP and (B) 5'-ATP in 10 mM phosphate buffer (pH 7.4). [5'-GTP or 5'-ATP], (a) 0 and (g) 500 μ M (λ_{ex} = 355 nm).

Figure S3. ¹H NMR spectra of the **CP-1** in D_2O in the (a) absence and (b) presence of 5'-ATP (0.35 mM).

Figure S4. Changes in the absorption spectrum of HPTS (7 μ M) with gradual addition of **CP–1** in phosphate buffer (pH 7.4). Inset shows the Benesi–Hildebrand fit for fluorescence quenching of HPTS by **CP–1**. [**CP–1**], (a) 0, (b) 1.25, (c) 2.51, (d) 3.78, (e) 5.05 and (f) 6.25 μ M.

Figure S5. Changes in the emission spectrum of HPTS (3.3 μ M) with gradual addition of **CP-4** in phosphate buffer (pH 7.4). [**CP-4**], (a) 0, (b) 3.14, (c) 6.23, (d) 9.27, (e) 12.26, (f) 15.2, (g) 18.1, (h) 20.94 and (i) 23.75 μ M (λ_{ex} = 364 nm).

Figure S6. Fluorescence decay profile of HPTS (3.0 μ M) alone and in the presence of the cyclophane **CP–2**. [**CP–2**] (a) 0, (b) 3.5 and (c) 4.3 μ M.

Figure S7. Effect of temperature on the emission spectrum of the complex [**CP**– **3**·HPTS] in phosphate buffer (10 mM, pH 7.4). (a) 298 to (g) 358 K (λ_{ex} = 364 nm).

Figure S8. Relative fluorescence quenching of HPTS by **CP-4** at different salt concentrations.

Figure S9. Changes in the emission spectrum of HPTS (6.6 μ M) with gradual addition of **OC-4** in phosphate buffer (pH 7.4). [**OC-4**], (a) 0, (b) 1.25, (c) 2.51, (d) 3.78, (e) 5.05 and (f) 6.25 μ M. (λ_{ex} = 364 nm).

Figure S10. Fluorescence indicator displacement from the complexes (A) [**CP-2**·HPTS] and (B) [**CP-3**·HPTS] by 5'–GTP in phosphate buffer (pH 7.4). [5'–GTP], (a) 0 and (i) 1.6 mM (λ_{ex} = 364 nm).

Figure S11. Fluorescence indicator displacement from the complex [**CP-4**·HPTS] by 5'-GTP in phosphate buffer (pH 7.4). [5'-GTP], (a) 0 and (i) 0.56 mM ($\lambda_{ex} = 364$ nm).

Figure S12. ¹H NMR spectrum of **CP–1** in DMSO-*d*₆.

Figure S13. ¹H NMR spectrum of **CP–2** in DMSO-*d*₆.

Figure S14. ¹H NMR spectra of **CP–3** in DMSO- d_6 .

Figure S15. ¹H NMR spectra of **CP–4** in DMSO- d_6 +D₂O.

Figure S16. ¹H NMR spectra of **OC–4** in D_2O .