Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Munawar Hussain, a Rasheed Ahmad Khera, a Nguyen Thai Hung, Peter Langer* a,b

^a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany

Fax: +381 4986412, E-mail: peter.langer@uni-rostock.de

^b Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

Supporting Information

General procedure A for Suzuki-Miyaura Cross-Coupling Reactions: The reaction was carried out in a pressure tube. To a dioxane or toluene/dioxane (4:1) suspension (2.5 mL) of the brominated furan, Pd(PPh₃)₄ (2-3 mol%) and of the arylboronic acid **2** (1.0 to 1.1 equiv. per bromine atom of the substrate) was added an aqueous solution of K₂CO₃ (2 M, 0.5 mL). The mixture was heated at the indicated temperature (80 °C) under Argon atmosphere for the indicated period of time (3-5 h). The reaction mixture was diluted with water and extracted with CH₂Cl₂ (3 x 25 mL). The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated *in vacuo*. The residue was purified by flash chromatography (silica gel, EtOAc / heptanes).

2

Synthesis of tetraarylfurans 3a-j

2,3,4,5-Tetraphenylfuran (**3a**). Following *general procedure A*, compound **3a** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (9 mg, 3 mol%), 1,4-dioxane (2.5 mL), 2M K₂CO₃ (0.5 mL) and phenylboronic acid (132 mg, 1.10 mmol) as a white crystalline solid (86 mg, 92%). ¹H NMR (250 MHz, CDCl₃): $\delta = 7.05$ -7.10 (m, 4H, ArH), 7.13-7.22 (m, 8H, ArH), 7.41-7.46 (m, 4H, ArH). ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 125.1$ (C), 125.9, 127.2, 127.3, 128.3, 128.4, 130.4 (CH), 130.9, 133.2, 147.7 (C). IR (KBr): v = 3082, 3047, 2918, 2852 (w), 1482, 1443 (m), 1387, 1315, 1249, 1152 (w), 1071, 1024, 946, 917, 908, 793, 765, 756, 739, 704 (m), 689, 679 (s), 657, 648, 618 (m), 580, 536 (w) cm⁻¹; GC-MS (EI, 70 eV): m/z (%) = 72 ([M]⁺, 100), 267 (23), 165 (05). HRMS (EI, 70 eV): calcd for C₂₈H₂₀O [M]⁺: 372.15087 found 472.150596.

2,3,4,5-Tetra-*p***-tolylfuran** (**3b**). Following *general procedure A*, compound **3b** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (09 mg, 2 mol%), toluene/dioxane (4:1, 2.5 mL), 2M K_2CO_3 (0.5 mL) and *p*-tolylboronic acid (136 mg, 1.0 mmol) as a white solid (108 mg, 90%). ¹H NMR (300 MHz, CDCl₃): δ = 2.23 (s, 12H, 4CH₃), 6.94-6.99 (m, 10H, ArH), 7.30-7.33 (m, 4H, ArH). ¹³C NMR (62.9 MHz, CDCl₃): δ = 21.2, 21.3 (CH₃), 124.3 (C), 125.7 (CH), 128.4 (C), 128.9, 129.0, 130.2 (CH), 130.3, 136.4, 136.8, 147.5 (C). IR (KBr): ν = 2958, 2931, 2835 (w),

1782, 1604 (m), 1520, 1493, 1234 (m), 1161 (s), 1073, 944 (m), 820 (s), 640, 567 (m). cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 484 (M⁺, 100), 351 (13). HRMS (EI, 70 eV): calcd. for C₃₆H₃₆O (M⁺): 484.27607; found: 484.27607.

2,3,4,5-Tetrakis(**4-ethylphenyl)furan** (**3c**). Following *general procedure A,* compound **3c** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (09 mg, 3 mol%), 1,4-dioxane (2.5 mL), 2M K₂CO₃ (0.5 mL) and 4-ethylphenylboronic acid (165 mg, 1.10 mmol) as a white solid (111 mg, 92%). ¹H NMR (300 MHz, CDCl₃): δ = 1.15 (t, 6H, J = 7.6 Hz, 2CH₃), 1.16 (t, 6H, J = 7.6 Hz, 2CH₃), 2.51-2.58 (m, 8H, 4CH₂), 6.89-7.03 (m, 12H, ArCH), 7.35 (d, 4H, J = 8.2 Hz, ArH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 15.1, 15.3 (2CH₃), 28.5, 28.6 (2CH₂), 124.4 (C), 125.8, 127.7, 127.8 (CH), 128.7 (C), 130.3 (CH), 130.6, 142.7, 143.2, 147.5 (C). IR (KBr): \tilde{v} = 3023 (w), 2964, 2929, 2869, 2859, 1518, 1454, 1372 (m), 1317, 1298, 1261, 1242, 1185 (w), 1184, 1114, 1104, 1062, 1045, 1018, 966, 944 (m), 832 (s), 795, 782, 747 (w), 686, 647, 637, 628 (m), 595, 587, 551 (w) cm⁻¹; GC-MS (EI, 70 eV): m/z (%) = 484 ([M]⁺, 100), 469 (15), 351 (09). HRMS (EI, 70 eV): calcd for C₃₆H₃₆O [M]⁺: 484.27607 found 484.275860.

2,3,4,5-Tetrakis(**4-tert-butylphenyl)furan** (**3d**). Following *general procedure A*, compound **3d** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (9 mg, 3 mol%), 1,4-dioxane (2.5 mL), 2M K₂CO₃ (0.5 mL) and 4-*tert*-butylphenylboronic acid (195 mg, 1.10 mmol) as a white solid (137 mg, 92%). ¹H NMR (300 MHz, CDCl₃): δ = 1.22 (s, 18H, 6CH₃), 1.23 (t, 18H, 6CH₃), 7.00 (d, 4H, J = 8.7 Hz, ArH), 7.16 (d, 4H, J = 8.9 Hz, ArH), 7.20 (d, 4H, J = 8.7 Hz, ArH), 7.4 0 (d, 4H, J = 8.7 Hz, ArH). ¹³C NMR (75.5 MHz, CDCl₃) : δ = 131.3, 31.4 (6CH₃), 34.5, 34.6, 124.7 (C), 125.0, 125.2, 125.3 (CH), 128.5 (C), 130.0 (CH), 130.4, 147.3, 149.7, 149.9 (C). IR (KBr): \tilde{v} = 2960 (s), 2904, 2867 (m), 1789, 1766 (w) 1681, 1674, 1604, 1475, 1462, 1407, 1362, 1298 (m), 1267 (s), 1182, 1108, 1012 (m), 974, 942, 926, 887, 856 (w), 828 (s), 784, 770, 702, 687, 649, 626, 575, 545 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 484 ([M]⁺, 100), 469 (15), 351 (09). HRMS (EI, 70 eV): calcd for C₄₄H₅₂O [M]⁺: 596.40182 found 596.40177.

2,3,4,5-Tetrakis(3-chlorophenyl)furan (3e). Following *general procedure A*, compound 3e was prepared from 1 (96 mg, 0.25 mmol), Pd(PPh₃)₄ (9 mg, 3 mol%), 1,4-dioxane (2.5 mL), 2M K_2CO_3 (0.5 mL) and 3-chlorophenylboronic acid (171 mg, 1.10 mmol) as a white crystalline solid (101 mg, 80%). ¹H NMR (300 MHz, CDCl₃): δ = 6.93-7.00 (m, 2H, ArH), 7.06-7.23 (m, 12H, ArH), 7.47-7.48 (m, 2H, ArH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 124.0 (CH), 124.5 (C), 125.8, 128.0, 128.1, 128.4, 129.8, 130.0, 130.1 (CH), 131.6, 133.9, 134.5, 134.7, 147.2(C). IR (KBr): \tilde{v} = 1598, 1569, 1470 (m), 1426, 1321, 1300, 1257, 1136 (w), 1111, 1100, 1090, 878, 789 (m), 780, 755, 681 (s), 665, 616, 550 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 516 ([M, ³⁷Cl₄]⁺, 02), 514 ([M, ³⁵Cl₃, ³⁷Cl₃]⁺, 19), 512 ([M, ³⁵Cl₂, ³⁷Cl₂]⁺, 52), 510 ([M, ³⁵Cl₃, ³⁷Cl]⁺, 100), 508 ([M, ³⁵Cl₄]⁺, 19), 369 (14), 263 (15). HRMS (EI, 70 eV): calcd for $C_{28}H_{16}Cl_4O$ [M, ³⁵Cl₄]⁺: 507.9955 found 507.99534.

2,3,4,5-Tetrakis(**4-fluorophenyl)furan** (**3f**). Following *general procedure A*, compound **3f** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (09 mg, 3 mol%), 1,4-dioxane (2.5 mL), 2M K₂CO₃ (0.5 mL) and 4-fluorophenylboronic acid (154 mg, 1.10 mmol) as a white solid (94 mg, 80%). 1 H NMR (300 MHz, CDCl₃): δ = 6.86-6.85 (m, 8H, ArH), 6.98-7.04 (m, 4H, ArH), 7.31-7.41 (m, 4H, ArH). 19 F NMR (282 MHz, CDCl₃): δ = -113.35, -111.25 . 13 C NMR (75.5 MHz, CDCl₃) : δ = 115.6 (d, $J_{F,C}$ = 21.9 Hz, CH), 115.7 (d, $J_{F,C}$ = 21.3 Hz, CH), 123.5 (C), 126.6 (d, $J_{F,C}$ = 3.3 Hz, C), 127.6 (d, $J_{F,C}$ = 8.2 Hz, CH), 128.6 (d, $J_{F,C}$ = 3.5 Hz, C), 131.9 (d, $J_{F,C}$ = 8.0 Hz, CH), 147.1, (C), 127.6 (d, $J_{F,C}$ = 248.5 Hz, 2CF). IR (KBr): \tilde{v} = 3054, 2920, 2851 (w), 1738, 1732, 1589, 1475 (w), 1434 (m), 1393, 1378, 1307, 1260 (w), 1192, 1117 (s), 1089, 1068, 1025, 996 (m), 747, 743, 718, 691, 537 (s) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 444 ([M]⁺, 100), 321 (30), 201 (5). HRMS (EI, 70 eV): calcd for C₂₈H₁₆O₄ [M] * 444.11318 found 444.11267.

2,3,4,5-Tetrakis(**4-(trifluoromethyl)phenyl)furan** (**3g).** Following *general procedure A*, compound **3g** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (09 mg, 2 mol%), toluene/dioxane (4:1, 2.5 mL), 2M K₂CO₃ (0.5 mL) and 4-(trifluoromethyl)phenylboronic acid (190 mg, 0.25 mmol) as a white solid (143 mg, 89%). ¹H NMR (300 MHz, CDCl₃): δ = 7.19 (d, 4H, J= 7.9 Hz, ArH), 7.48-7.51 (m, 12H, ArH). ¹⁹F NMR (282.4 MHz, CDCl₃): δ = -62.6, -62.8.

¹³C NMR (62.9 MHz, CDCl₃): δ = 123.8 (q, $J_{F,C}$ = 272.2 Hz, CF₃), 125.1 (C), 125.7 (q, $J_{F,C}$ = 3.9 Hz, CH), 125.9 (q, $J_{F,C}$ = 3.4 Hz, CH), 126.2 (CH), 129.6 (q, $J_{F,C}$ = 32.8 Hz, C-CF₃), 129.7 (q, $J_{F,C}$ = 32.0 Hz, C-CF₃), 130.5 (CH), 132.9, 135.6, 148.0. IR (KBr): \tilde{v} = 3052, 2923(w), 1695, 1612, 1446 (m), 1333 (s), 1168 (m), 1132 (m), 1080, 810, 740 (m), 682 (s), 642, 589 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 644 (M⁺, 100), 625 (11), 471 (31), 173 (27), 145 (22). HRMS (EI, 70 eV): m/z = calcd. for C₃₂H₁₆OF₁₂ [M⁺]: 644.10041, found: 644.100370.

2,3,4,5-Tetrakis(**3-(trifluoromethyl)phenyl)furan** (**3h).** Following *general procedure A,* compound **3i** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (09 mg, 3 mol%), 1,4-dioxane (2.5 mL), 2M K₂CO₃ (0.5 mL) and 3-(trifluoromethyl)phenylboronic acid (208 mg, 1.10 mmol) as a white crystalline solid (132 mg, 82%). ¹H NMR (300 MHz, CDCl₃): δ = 7.23-7.27 (m, 2H, ArH), 7.32-7.39 (m, 6H, ArH), 7.45-7.58 (m, 6H, ArH), 7.67 (brs, 2H, ArH). ¹⁹F NMR (282.4 MHz, CDCl₃): δ = -63.11, -63.20. ¹³C NMR (75.5 MHz, CDCl₃): δ = 122.7 (q, $J_{F,C}$ = 4.1 Hz, CH), 123.8 (q, $J_{F,C}$ = 272.2 Hz, CF₃), 123.9 (q, $J_{F,C}$ = 273.3 Hz, CF₃), 124.5 (C), 124.7 (q, $J_{F,C}$ = 3.9 Hz, CH), 124.8 (q, $J_{F,C}$ = 3.9 Hz, CH), 122.7 (q, $J_{F,C}$ = 3.6 Hz, CH), 128.9, 129.2, 129.4 (CH), 130.4 (C), 131.3 (q, $J_{F,C}$ = 36.7 Hz, C-CF₃), 131.4 (q, $J_{F,C}$ = 36.7 Hz, C-CF₃), 132.5 (C), 133.4 (CH), 147.7 (C). IR (KBr): \tilde{v} = 1617, 1611, 1492, 1476, 1462, 1439, 1354 (w), 1324 (s), 1294, 1284, 1205 (m), 1160, 1113, 1097, 1068 (s), 1000, 967, 897, 850 (m), 800 (s), 739 (w), 707, 700, (s), 652 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 644 ([M]⁺, 100), 555 (11), 411 (12), 325 (10). HRMS (EI, 70 eV): m/z = 644.10095; calcd. for C₃₂H₁₆F₁₂O (M⁺), found: 644.099515.

2,3,4,5-Tetrakis(**4-methoxyphenyl**)**furan** (**3i**). Following *general procedure A*, compound **3i** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (09 mg, 3 mol%), 1,4-dioxane (2.5 mL), 2M K₂CO₃ (0.5 mL) and 4-methoxyphenylboronic acid (167 mg, 1.10 mmol) as a white crystalline solid (120 mg, 98%). ¹H NMR (300 MHz, CDCl₃): δ = 3.70 (s, 12H, 4OCH₃), 6.67-6.98 (m, 8H, ArH), 6.96 (d, 4H, J = 8.3 Hz, ArH), 7.34 (d, 4H, J = 8.9 Hz, ArH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 55.1, 55.2 (OCH₃), 113.8, 113.9 (CH), 123.3, 124.1, 125.8 (C), 127.2, 131.6 (CH), 147.2, 158.5, 158.7 (C). IR (KBr): \tilde{v} = 3433 (w), 3020, 3001, 2953, 2922, 2839, 1603 (m), 1501, 1492, 1283, 1172, 1029, 831 (s), 788 (m) cm⁻¹; GC-MS (EI, 70 eV): m/z (%) = 492 ([M]⁺,

100), 377 (15), 357 (09), 246 (05), 246 (22). HRMS (EI, 70 eV): calcd for $C_{32}H_{28}$ O_5 $[M]^+$: 492.19313 found 492.193346.

2,3,4,5-Tetrakis(**3,5-dimethylphenyl)furan** (**3j**). Following *general procedure A*, compound **3j** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (09 mg, 3 mol%), 1,4-dioxane (2.5 mL), 2M K₂CO₃ (0.5 mL) and 3,5-dimethylphenylboronic acid (165 mg, 1.10 mmol) as a white crystalline solid (91 mg, 76%). ¹H NMR (300 MHz, CDCl₃): δ = 2.11 (s, 12H, 4CH₃), 2.15 (s, 12H, 4CH₃), 6.71 (s, 2H, ArH), 6.72 (s, 2H, ArH), 6.76 (s, 4H, ArH), 7.08 (s, 4H, ArH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 21.1, 21.4, 123.6 (CH), 125.2 (C), 128.3, 128.5, 128.8 (CH), 131.1, 133.2, 137.3, 137.6, 147.5 (C). IR (KBr): \tilde{v} = 3003, 2915, 2860 (w), 1618, 1599, 1462, 1444, 1377, 1299, 1213, 1198, 1176, 1148, 1036, 913, 894 (m), 848 (s), 801, 729, 702, 692, 675 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 484 ([M]⁺, 100), 351 (33), 321 (5), 242 (6). HRMS (EI, 70 eV): calcd for C₃₆H₃₆O [M] ⁺: 484.27607 found 484.27587.

Synthesis of 2,5-diaryl-3,4-dibromofurans 4

3,4-Dibromo-2,5-bis(**3-chlorophenyl)furan** (**4a**). Following *general procedure A,* compound **4a** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (06 mg, 2 mol%), toluene/dioxane (4:1, 2.5 mL), 2M K₂CO₃ (0.5 mL) and 3-chlorophenylboronic acid (78 mg, 0.50 mmol) as a white solid (87 mg, 85%). ¹H NMR (300 MHz, CDCl₃): δ = 7.26-7.33 (m, 4H, ArH), 7.83 (dt, J = 1.6, 7.4 Hz, 2H, ArH), 7.89-7.91 (m, 2H, ArH). ¹³C NMR (75.7 MHz, CDCl₃): δ = 103.7 (C), 123.7, 125.5, 128.2, 130.0 (CH), 130.4, 134.8, 147.1 (C). IR (KBr): \tilde{v} = 1596, 1567, 1471, 1461 (m), 1426, 1401, 1321, 1302, 1258, 1241, 1136 (w), 1112, 1102, 1092, 1074, 991, 958, 878, 789 (m), 779, 754, 681 (s), 664, 615, 549, 529 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 446 ([M, ⁷⁹Br, ⁸¹Br, ³⁵Cl ³⁵Cl] + or [M, ⁷⁹Br, ⁷⁹Br, ³⁵Cl ³⁷Cl] +, 100), 444 ([M, ⁷⁹Br, ⁷⁹Br, ³⁵Cl, ³⁵Cl] +, 36), 450 ([⁸¹Br, ⁸¹Br, ³⁷Cl, ³⁷Cl] +, 31), 339 (10), 223 (14). HRMS (EI, 70 eV): m/z = 443.83135, calcd. for C₁₆H₈OBr₂Cl₂ (M⁺, [⁷⁹Br, ⁷⁹Br, ³⁵Cl, ³⁵Cl]) found: 443.832061.

3,4-Dibromo-2,5-bis(**3-(trifluoromethyl)phenyl)furan** (**4c**). Following *general procedure A,* compound **4c** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (6 mg, 2 mol%), toluene/dioxane (4:1, 2.5 mL), 2M K₂CO₃ (0.5 mL) and 3-(trifluoromethyl)phenylboronic acid (95 mg, 0.50 mmol) as a white solid (109 mg, 85%). 1 H NMR (300 MHz, CDCl₃): δ = 7.50-7.59 (m, 4H, ArH), 8.12-8.15 (m, 2H, ArH), 8.21 (brs, 2H, ArH). 19 F NMR (282 MHz, CDCl₃): δ = 62.87. 13 C NMR (62.9 MHz, CDCl₃): δ = 104.0 (C), 122.4 (q, $J_{F,C}$ = 4.0 Hz, CH), 124.23 (q, $J_{F,C}$ = 272.6 Hz, CF₃), 125.4 (q, $J_{F,C}$ = 3.7 Hz, CH), 128.7, 129.3 (CH), 129.4 (C), 131.3 (q, $J_{F,C}$ = 32.7 Hz, C-CF₃), 147.4 (C). IR (KBr): ν = 3028 , 2922, 2867, 1746, 1692, 1610, 1511, 1445, 1428 (w), 1327, 1307, 1147 (m), 1122, 1071 (s), 1052, 961, 946, 902, 845 (w), 801 (m), 750, 740, 715 (w), 693 (s), 664, 655, 573 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 514 ([M, 79 Br, 79 Br] $^+$, 52), 514 ([M, 81 Br, 81 Br] $^+$, 100), 516 ([M, 81 Br, 81 Br] $^+$, 49), 495 (07), 407 (12), 326 (07), 257 (15), 173 (37). HRMS (EI, 70 eV): m/z = 511.88406, calcd. for C₁₈H₈Br₂OF₆ (M⁺, [79 Br, 79 Br]) found: 511.884645; 513.88201, calcd. for (M⁺, [81 Br, 79 Br]) found: 513.882475; 515.87997, calcd. for (M⁺, [81 Br, 81 Br]) found 515.880736

3,4-Dibromo-2,5-bis(**4-fluorophenyl)furan** (**4e**). Following *general procedure A,* compound **5e** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (06 mg, 2 mol%), toluene/dioxane (4:1, 2.5 mL), 2M K₂CO₃ (0.5 mL) and 4-fluorophenylboronic acid (70 mg, 0.50 mmol) as a white solid (90 mg, 87%). ¹H NMR (300 MHz, CDCl₃): δ = 7.05-7.17 (m, 4H, ArH), 7.91-7.96 (m, 4H, ArH). ¹⁹F NMR (282 MHz, CDCl₃): δ = -111.4. ¹³C NMR (62.9 MHz, CDCl₃): δ = 102.1 (C), 115.6, 116.0 (CH), 125.2 (d, $J_{C,F}$ = 3.6 Hz, C), 127.6, 127.8 (CH), 147.4, 162.3 (d, $J_{C,F}$ = 251.9 Hz, CF). IR (KBr): v = 1786, 1760, 1605, 1497, 1523, 1492 (m), 1410, 1298, 1275 (w), 1233, 1159 (s), 1072, 996, 943, 829 (m), 729, 641, 632, 597, 587 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 416 ([M, ⁸¹Br, ⁸¹Br]⁺, 50), 414 ([M, ⁷⁹Br, ⁸¹Br]⁺, 100), 412 ([M, ⁷⁹Br, ⁷⁹Br]⁺, 50), 305 (18), 225 (18), 207 (10). HR-MS (EI, 70 eV): m/z = 411.89100, calcd. for $C_{16}H_{8}OBr_{2}F_{2}$ (M⁺, [⁷⁹Br, ⁷⁹Br]) found: 411.890019; 413.88840, calcd. for (M⁺, [⁷⁹Br, ⁸¹Br]) found 413.888075; 415.88635, calcd. for (M⁺, [⁸¹Br, ⁸¹Br]) found 415.886165.

Synthesis of 2-aryl-3,4,5-tribromofurans 5a-e

2,3,4-Tribromo-5-(3-chlorophenyl)furan (**5a**). Following *general procedure A,* compound **5a** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (6 mg, 2 mol%), toluene/dioxane (4:1, 5 mL), 2M K₂CO₃ (0.5 mL) and 3-chlorophenylboronic acid (39 mg, 0.25 mmol) as a highly viscous colourless oil (90 mg, 87%). ¹H NMR (300 MHz, CDCl₃): δ = 7.25-7.33 (m, 2H, ArH), 7.73-7.76 (m, 2H, ArH), 7.82 (brs, 1H, ArH). ¹³C NMR (75.5 MHz, CDCl₃): δ = 100.9, 107.3, 122.1, 122.2 (C), 122.4, 124.3, 127.9, 128.9 (CH), 133.8, 149.2 (C). IR (KBr): \tilde{v} = 3093, 3066, 2961, 2921 (w), 1789, 1769, 1596 (s), 1514, 1471 (m), 1418, 1401, 1315, 1260, 1204 (w), 1164, 1111, 1089, 1065, 1003, 958, 884 (m), 681 (s) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 416 (M⁺, [⁸¹Br₂⁷⁹Br], 100), 379 (9), 351 (16), 307 (94), 256 (19), 228 (17). HRMS (EI, 70 eV): calcd. for C₁₀H₄OClBr₃ (M⁺, [⁷⁹Br₃]): 411.74953, found: 411.749450; calcd. For (M⁺, [⁸¹Br⁷⁹Br₂]): 413.74749, found 413.747368; calcd. for (M⁺, [⁸¹Br₂⁷⁹Br]): 415.74544, found 415.745451; (M⁺, [⁸¹Br₃]): 417.74339, found 417.743243.

2,3,4-Tribromo-5-(4-(trifluoromethyl)phenyl)furan (**5c).** Following *general procedure A*, compound **5c** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (06 mg, 2 mol%), toluene/dioxane (4:1, 2.5 mL), 2M K₂CO₃ (0.5 mL) and 3-(trifluoromethyl)phenylboronic acid (51 mg, 0.27 mmol) as a highly viscous colourless oil (95 mg, 85%). ¹H NMR (300 MHz, CDCl₃): δ = 7.46-7.57 (m, 2H, ArH), 8.03-8.10 (m, 2H, ArH). ¹⁹F NMR (282.4 MHz, CDCl₃): δ = -62.9. ¹³C NMR (62.9 MHz, CDCl₃): δ = 102.2, 108.4 (C), 122.1 (q, $J_{F,C}$ = 3.9 Hz, CH), 123.4 (C), 123.8 (q, $J_{F,C}$ = 272.3 Hz, CF₃), 125.4 (q, $J_{F,C}$ = 3.6 Hz, CH), 128.3 (CH), 129.1 (C), 129.2 (CH), 132.8 (q, $J_{F,C}$ = 32.9 Hz, C-CF₃), 150.1 (C). IR (KBr): \tilde{v} = 3083, 3060, 2951, 2931 (w), 1776, 1757, 1583 (s), 1504, 1461 (m), 1418, 1403, 1317, 1261, 1203 (w), 1167, 1088, 1064, 998, 884 (m), 676 (s) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 451 ([M⁺, ⁸¹Br₃], 12), 449 ([M⁺, ⁷⁹Br⁸¹Br₂]⁺, 12), 447 ([M⁺, ⁸¹Br⁷⁹Br₂]⁺, 100), 445 ([M⁺, ⁷⁹Br₃]⁺, 33), 343 (49), 342 (11), 341 (97), 339 (49), 290 (11), 288 (12), 262 (22), 260 (22), 181 (31), 161 (11). HRMS (EI, 70 eV): m/z ealcd. for C₁₁H₄OBr₃F₃ (M⁺, [⁷⁹Br, ⁷⁹Br, ⁷⁹Br]): 445.77589, found: 445.77589; calcd. for (M⁺, [⁸¹Br, ⁸¹Br, ⁷⁹Br]): 449.77180, found 449.771888; calcd. for (M⁺, [⁸¹Br, ⁸¹Br, ⁸¹Br, ⁸¹Br, ⁸¹Br, ⁸¹Br, ⁹¹Br]): 451.76975, found 451.76975.

8

2,3,4-Tribromo-5-(4-methoxyphenyl)furan (**5d).** Following *general procedure A*, compound **5d** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (06 mg, 2 mol%), toluene/dioxane (4:1, 2.5 mL), 2M K₂CO₃ (0.5 mL) and 4-methoxyphenylboronic acid (41 mg, 0.27 mmol) as a highly viscous colourless oil (90 mg, 91%). 1 H NMR (250 MHz, CDCl₃): δ = 3.77 (s, 3H, OCH₃), 6.87 (d, J = 8.7 Hz, 2H, ArH), 7.75 (d, J = 8.9 Hz, 2H, ArH). 13 C NMR (62.9 MHz, CDCl₃): δ = 55.3 (OCH₃), 99.1, 107.7 (C), 114.0 (CH), 121.2, 121.3 (C), 127.1 (CH), 151.8, 160.0 (C). IR (KBr): v = 3070, 1886 (w), 1781, 1601 (m), 1520, 1481, 1222, 1145 (s), 1064, 932 (m), 815 (s), 634, 577 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 414 (M⁺, [⁸¹Br₃], 4), 412 (M⁺, [⁸¹Br₂⁷⁹Br], 12) 410 (M⁺, [⁸¹Br₂⁷⁹Br₂], 43), 408 (M⁺, [⁷⁹Br₃], 100), 376 (10), 300 (13). HRMS (EI, 70 eV): calcd. for C₁₁H₇Br₃O₂ (M⁺, [⁸¹Br₃]): 414.89397, found: 414.893850; calcd. for (M⁺, [⁷⁹Br⁸¹Br₂]): 412.99102, found 412.991369; calcd. for (M⁺, [⁷⁹Br₂⁸¹Br]): 410.88710, found 410.887321; calcd. for (M⁺, [⁸¹Br₃]): 408.76424, found 408.764562.

2,3,4-Tribromo-5-(4-fluorophenyl)furan (5e). Following *general procedure A*, compound **5e** was prepared from **1** (96 mg, 0.25 mmol), Pd(PPh₃)₄ (06 mg, 2 mol%), toluene/dioxane (4:1, 2.5 mL), 2M K₂CO₃ (0.5 mL) and 4-fluorophenylboronic acid (38 mg, 0.27 mmol) as a highly viscous colourless oil (87 mg, 88%). ¹H NMR (300 MHz, CDCl₃): $\delta = 7.01$ -7.09 (m, 2H, ArH), 7.77-7.85 (m, 2H, ArH). ¹⁹F NMR (282.4 MHz, CDCl₃): $\delta = -110.9$. ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 100.5$, 108.0 (C), 115.8 (d, $J_{F,C} = 22.3$ Hz, CH), 122.3 (C), 124.8 (d, $J_{F,C} = 1.0$ Hz, C), 127.5 (d, $J_{F,C} = 8.1$ Hz, CH), 150.9 (C), 162.6 (d, $J_{F,C} = 249.2$ Hz, CF). IR (KBr): $\tilde{v} = 3072$, 1887 (w), 1782, 1604 (m), 1523, 1491, 1233, 1159 (s), 1071, 943 (m), 828 (s), 641, 597 (m) cm ¹. GC-MS (EI, 70 eV): m/z (%) = 402 (M⁺, [⁸¹Br₃], 5), 400 (M⁺, [⁸¹Br₂⁷⁹Br], 10), 398 (M⁺, [⁸¹Br₂⁷⁹Br₂], 34), 396 (M⁺, [⁷⁹Br₃], 100), 376 (10). HRMS (EI, 70 eV): m/z = calcd. for C₁₀H₄Br₃FO (M⁺, [⁸¹Br₃]): 402.79186, found: 402.791732; calcd. for (M⁺, [⁷⁹Br⁸¹Br₂]): 400.87112, found 400.871257; calcd. for (M⁺, [⁷⁹Br₂⁸¹Br]): 398.77613, found 398. 776221; calcd. for (M⁺, [⁸¹Br₃]): 396.67324, found 396.6731562.

Synthesis of unsymmetrical tetraarylfurans 6

General procedure B for the one-pot synthesis of products **6.** The reaction was carried out in a pressure tube. To a suspension of **1** (0.75 mmol), Pd(PPh₃)₄ (27 mg, 3 mol%) and **2a,b,d,j** (1.5 mmol) in toluene/dioxane (4:1, 10 mL) was added a 2M solution of K₂CO₃ (1 mL). The mixture was heated at 80 °C under Argon atmosphere for 3 h. The reaction mixture was cooled to 20 °C and was distributed carefully into three equal portions in separate pressure tubes. One arylboronic acid (**2a**, **2b**, **2d** or **2j**) (0.55 mmol) was added to each reaction vessel. The reaction mixture was heated under Argon atmosphere for 3 h at 80 °C. After cooling to 20 °C, each mixture was diluted with water and extracted with CH₂Cl₂ (3 x 25 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The residues of each reaction were purified by column chromatography (EtOAc/heptanes) to give **6b-d,e**, respectively.

3,4-Diphenyl-2,5-bis(3-(trifluoromethyl)phenyl)furan (6b). Following *general procedure B*, compound 6b was prepared from phenylboronic acid (67 mg, 0.55 mmol) as a highly viscous colorless oil (109 mg, 86%). ¹H NMR (300 MHz, CDCl₃): δ = 7.06-7.09 (m, 4H, ArH), 7.18-7.22 (m, 6H, ArH), 7.29-7.46 (m, 4H, ArH), 7.57 (d, 2H, J = 7.7 Hz, ArH), 7.69 (brs, 2H, ArH). ¹⁹F NMR (282.4 MHz, CDCl₃): δ = -63.0. ¹³C NMR (65.5 MHz, CDCl₃): δ = 122.4 (q, $J_{F,C}$ = 3.9 Hz, CH), 123.9(q, $J_{F,C}$ = 272.7 Hz, CF₃), 124.0 (q, $J_{F,C}$ = 3.9 Hz, CH), 125.2 (C), 126.0, 127.7, 128.7, 128.9, 130.1 (CH), 130.9 (d, $J_{F,C}$ = 32.3 Hz, C-CF₃), 131.3, 132.1, 146.9 (C). IR (KBr): \tilde{v} = 3062, 2926 (w), 1693, 1610, 1448 (m), 1330 (s), 1166 (m), 1122 (m), 1070, 801, 750 (m), 692 (s), 652, 579 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 508 (M⁺8), 368 (10), 367 (39), 257 (13), 236 (12), 173 (87), 165 (10), 145 (27), 137 (14), 135 (13), 125 (14), 123 (15), 121 (10), 112 (12), 111 (25), 110 (13), 109 (16), 105 (100), 99 (11), 98 (17), 97 (42), 96 (23), 95 (27), 93 (10), 91 (10), 85 (28), 84 (20), 83 (46), 82 (25), 81 (44), 78 (13), 77 (30), 73 (13), 71 (44), 70 (24), 69 (96), 68 (17), 67 (22), 63 (11), 57 (71), 56 (21), 55 (51), 43 (50), 41 (38). HRMS (EI, 70 eV): m/z = calcd. for C₃₀H₁₈OF₆ [M⁺]: 508.12564, found: 508.125078.

3,4-Bis(4-tolyl)-2,5-bis(3-(trifluoromethyl)phenyl)furan (6c). Following *general procedure B*, compound **6c** was prepared from **4c** (102 mg, 0.20 mmol), Pd(PPh₃)₄ (06 mg, 2 mol%),

toluene/dioxane (4:1, 2.5 mL), 2M K₂CO₃ (0.5 mL) and *p*-tolylboronic acid (74 mg, 0.44 mmol) as a highly viscous colorless oil (100 mg, 93%). ¹H NMR (300 MHz, CDCl₃): δ = 2.25 (s, 6H, CH₃), 6.94-7.02 (m, 8H, ArH), 7.25-7.30 (m, 2H, ArH), 7.38 (d, J = 7.95, 2H, ArH), 7.55 (d, J = 7.95, 2H, ArH), 7.71 (brs, 2H, ArH). ¹⁹F NMR (300 MHz, CDCl₃): δ = -63.01. ¹³C NMR (62.9 MHz, CDCl₃): = 21.3 (CH₃), 122.4 (q, $J_{F,C}$ = 4.1 Hz, CH), 123.8 (q, $J_{F,C}$ = 3.8 Hz, CH), 123.9 (q, $J_{F,C}$ = 272.6 Hz, CF₃), 126.6 (C), 128.8 (CH), 129.1 (C), 129.4, 129.9 (CH), 130.9 (q, $J_{F,C}$ = 32.4 Hz, C-CF₃), 131.4, 137.4, 146.8 (C). IR (KBr): \tilde{v} = 3028, 2922, 2867 (w), 1746, 1691, 1609, 1511, 1327, 1222, 1164 (w), 1123 (s), 1071, 961, 801 (m), 693 (s), 655, 572 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 536 [M⁺], 100), 363 (18). HRMS (EI, 70 eV): m/z = calcd. for C₃₂H₂₂OF₆ [M⁺]: 536.15694, found: 536.157343.

3,4-Bis(**4**-*tert*-butylphenyl)-**2,5-bis**(**3**-(trifluoromethyl)phenyl)furan (**6d**). Following *general procedure B*, compound **6d** was prepared using *4*-*tert*-butylphenylboronic acid (98 mg, 0.55 mmol) as a highly viscous colorless oil (144 mg, 93%). ¹H NMR (300 MHz, CDCl₃): δ = 1.23 (s, 18H, 6CH₃), 8.03 (d, 4H, J = 8.4 Hz, ArH), 7.23 (d, 4H, J = 8.4 Hz, ArH), 7.32-7.39 (m, 4H, ArH), 7.54 (brs, 2H, ArH), 7.62-7.66 (m, 2H, ArH). ¹⁹F NMR (282.4 MHz, CDCl₃): δ = -63.1. ¹³C NMR (62.8 MHz, CDCl₃): δ = 31.2 (6CH₃), 34.6 (C), 122.5 (q, $J_{F,C}$ = 3.9 Hz, CH), 123.7 (q, $J_{F,C}$ = 3.9 Hz, CH), 124.2 (q, $J_{F,C}$ = 278 Hz, CF₃), 125.5 (CH), 126.6 (C), 128.7, 128.8, 129.7 (CH), 129.9 (C), 130.7 (d, $J_{F,C}$ = 32.7 Hz, C-CF₃), 131.4, 146.9, 150.7. IR (KBr): \tilde{v} = 3023, 3060, 2953, 2911 (w), 1782, 1760, 1556 (s), 1510, 1462 (m), 1405, 1314, 1260, 1203 (w), 1162, 1114, 1080, 1060, 999, 948, 871 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 620 (M⁺, 71), 605 (26), 565 (11), 564 (33), 492 (11), 491 (37), 479 (14), 173 (100), 161 (84), 145 (20), 57 (24), 43 (12). HRMS (EI, 70 eV): m/z = calcd. for C₃₈H₃₄OF₆ [M⁺]: 620.25084, found: 620.250900.

3,4-Bis(**3,5-dimethylphenyl**)-**2,5-bis**(**3-(trifluoromethyl)phenyl)furan** (**6e).** Following *general* procedure B, compound **6e** was prepared using 3,5-dimethylphenylboronic acid (82 mg, 0.55 mmol) as a highly viscous colorless oil (124 mg, 88%). ¹H NMR (300 MHz, CDCl₃): δ = 2.13 (s, 12H, 4CH₃), 6.71 (s, 4H, ArH), 6.82 (s, 2H, ArH), 7.27-7.39 (m, 4H, A rH), 7.56-7.61 (m, 2H, ArH), 7.72 (brs, 2H, ArH). ¹⁹F NMR (300 MHz, CDCl₃): δ = -63.05. ¹³C NMR (62.9 MHz,

CDCl₃): $\delta = 21.3$ (CH₃), 122.4 (q, $J_{F,C} = 4.1$ Hz, CH), 123.7 (q, $J_{F,C} = 4.1$ Hz, CH), 124.0 (q, $J_{F,C} = 270.3$ Hz, CF₃), 126.9 (C), 127.8, 128.6, 128.8, 129.3 (CH), 130.7 (q, $J_{F,C} = 31.2$ Hz, C-CF₃), 131.5, 131.9, 137.9, 146.6 (C). IR (KBr): $\tilde{v} = 3076$, 3066, 2919, 2862 (w), 1789, 1769, 1596 (s), 1514, 1471 (m), 1418, 1401, 1315, 1260, 1204 (w), 1164, 1111, 1089, 1065, 1601, 1485, 1446, 1353, 1322, 1164 (m), 1113, 1072 (s), 899, 864, 797 (m), 688 (s), 694 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 564 (M⁺, 100), 391 (19). HRMS (EI, 70 eV): m/z ealcd. for $C_{34}H_{26}OF_{6}$ [M⁺]: 564.18824, found: 564.188743.

2,3,4-Tris(4-*tert*-butylphenyl)-5-(3-(trifluoromethyl)phenyl)furan (7). Following *general* procedure *B*, compound **7** was prepared from **5c** (112 mg, 0.25 mmol), Pd(PPh₃)₄ (06 mg, 2 mol%), dioxane .5 mL), 2M K₂CO₃ (0.5 mL) and 4-*tert*-butylphenylboronic acid (146 mg, 0.82 mmol) as a highly viscous colourless oil (141 mg, 93%). ¹H NMR (300 MHz, CDCl₃): δ = 1.23 (s, 9H, 3CH₃), 1.24 (s, 9H, 3CH₃), 1.24 (s, 9H, 3CH₃), 6.98-7.05 (m, 4H, ArH), 7.17-7.25 (m, 8H, ArH), 7.39-7.43 (m, 2H, ArH), 7.56-7.61 (m, 2H, ArH). ¹⁹F NMR (282.4 MHz, CDCl₃): δ = -63.1. ¹³C NMR (62.9 MHz, CDCl₃): δ = 31.2, 31.3, 31.3 (CH₃), 34.5, 34.6 (C), 122.3 (q, $J_{F,C}$ = 4.2 Hz, CH), 123.2 (q, $J_{F,C}$ = 3.9 Hz, CH), 124.2 (q, $J_{F,C}$ = 277.8 Hz, CF₃), 124.6 (C), 125.1, 125.3, 125.4, 125.5 (CH), 126.6, 128.0 (C),128.4 (CH), 128.9, 129.6 (C), 129.8, 129.9 (CH), 130.3 (q, $J_{F,C}$ = 31.3 Hz, C-CF₃), 131.8, 145.8, 148.4, 149.9, 150.4, 150.5 (C). IR (KBr): \tilde{v} = 3064, 2922 (w), 1692, 1603, 1437 (m), 1320 (s), 1155 (m), 1103 (m), 1055, 740 (m), 682 (s), 642, 569 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%) = 608 (M⁺, 50), 593 (14), 251 (18), 173 (11), 163 (16), 162 (15), 161 (100), 57 (14). HRMS (EI, 70 eV): m/z = calcd. for C₄₁H₄₃OF₃ [M⁺]: 608.32605, found: 608.326028.