FeCl₃-promoted alkylation of indoles by enamides

Tianmin Niu, Lehao Huang, Tianxing Wu and Yuhong Zhang

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.

E-mail: yhzhang@zju.edu.cn Fax: +86-571-87953244; Tel: +86-571-87952723

Supporting Information

Content

General Information ...2

Typical procedure for the product...2

Characterization data of the product..3

References...39
General Information Unless otherwise stated, all reactions were carried out in oven-dried flask in air. 1H NMR spectra were recorded at 400 or 500 MHz and the chemical shifts were reported in parts per million (δ) relative to internal standard TMS (0 ppm) for CDCl$_3$ or DMSO-d6. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublet; dt, doublet of triplet. The coupling constants, J, are reported in Hertz (Hz). 13C NMR spectra were recorded at 100 or 125 MHz and referenced to the internal solvent signals (center peak is 77.00 ppm in CDCl$_3$ or 39.90 ppm in DMSO-d6). Mass spectroscopy data were collected on an HRMS-EI instrument. Melting points were measured on Yanaco MP-500 apparatus and uncorrected. FT-IR spectra were recorded on a Nicolet Nexus 470 FT-IR spectrophotometer and the data were reported in reciprocal centimetres (cm$^{-1}$). Indoles and Enamides materials were purchased from common commercial sources and used without additional purification.

Typical procedure for the product

Method A: A typical procedure for the preparation of 3-alkylindole: To a mixture of indole (59 mg, 0.5 mmol), FeCl$_3$ (8 mg, 0.05 mmol) and CH$_2$Cl$_2$ (5 mL), 1-vinylpyrrolidin-2-one (67 mg, 0.6 mmol) was added dropwise at room temperature. The resulting mixture was stirred at 40 °C for 30 min. After the reaction, the reaction solution was filtered through a pad of celite, and the solvent was removed under reduced pressure. The residue was purified on a silica gel column to afford the desired product.

Method B: A typical procedure for the preparation of Bis-indolylmethanes: N-Methyl-N-vinylacetamide (50 mg, 0.5mmol), indole (176 mg, 1.5 mmol), FeCl$_3$ (8 mg, 0.05 mmol) and CH$_2$Cl$_2$ (5 mL) were introduced into the reaction vessel at room temperature. The resulted mixture was stirred at 40 °C for 1 hour. After the reaction, the reaction solution was filtered through a pad of celite, and the solvent was removed under reduced pressure. The residue was purified on a silica gel column to afford the desired product.
Characterization data of the product

1-(1-(1H-indol-3-yl)ethyl)pyrrolidin-2-one [T 2-3a, New Compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 8.89 (s, 1 H), 7.62 (d, J = 8.0 Hz, 1 H), 7.38 (d, J = 7.6 Hz, 1 H), 7.19 (t, J = 7.2 Hz, 1 H), 7.13 (s, 1 H), 7.08 (t, J = 7.2 Hz, 1 H), 5.80 (q, J = 6.8 Hz, 1 H), 3.26 (dt, J = 8.6, 5.4 Hz, 1 H), 2.86 (dt, J = 9.0, 5.6 Hz, 1 H), 2.51-2.38 (m, 2 H), 1.95-1.85 (m, 1 H), 1.82-1.71 (m, 1 H), 1.58 (d, J = 7.2 Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 174.4, 136.6, 126.4, 122.3, 122.2, 119.7, 119.3, 115.7, 111.3, 42.7, 42.2, 31.8, 17.7, 16.7. HRMS (EI) Calcd for C$_{14}$H$_{16}$N$_2$O: [M$^+$] 228.1263; Found, 228.1260; IR ν (KBr) 3244, 3058, 2973, 2932, 1659, 1493, 1455, 1428, 1342, 1287, 1248, 1198, 1116, 771, 745, 659. cm$^{-1}$; mp: 147-149 °C.
1-(1-(4-methyl-1H-indol-3-yl)ethyl)pyrrolidin-2-one [T 2-3b, New compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 9.17 (s, 1 H), 7.22 (d, J = 8.0 Hz, 1 H), 7.18 (s, 1 H), 7.07 (t, J = 7.6 Hz, 1 H), 6.85 (d, J = 7.2 Hz, 1 H), 5.88 (q, J = 6.0 Hz, 1 H), 3.21 (dt, J = 8.8, 6.4 Hz, 1 H), 2.87 (dt, J = 9.4, 5.4 Hz, 1 H), 2.61 (s, 3 H), 2.44 (t, J = 8.2 Hz, 2 H), 1.95-1.86 (m, 1 H), 1.84-1.75 (m, 1 H), 1.59 (d, J = 6.8 Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 174.1, 137.2, 130.9, 125.3, 123.3, 122.2, 121.3, 115.3, 109.4, 44.4, 43.3, 32.3, 20.1, 17.8, 17.4. HRMS (EI) Calcd for C$_{15}$H$_{18}$N$_2$O: [M]$^+$ 242.1419; Found, 242.1419; IR ν (KBr) 3160, 3060, 2996, 2940, 1653, 1494, 1459, 1440, 1339, 1289, 1195, 1139, 780, 775, 680 cm$^{-1}$; mp: 184-186 oC.
1-(1-(5-methyl-1H-indol-3-yl)ethyl)pyrrolidin-2-one [T 2-3c, New Compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/dichloromethane=1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 9.32 (s, 1 H), 7.41 (s, 1 H), 7.30 (d, $J = 8.8$ Hz, 1 H), 7.10 (s, 1 H), 7.03 (d, $J = 8.4$ Hz, 1 H), 5.80 (q, $J = 6.8$ Hz, 1 H), 3.26 (dt, $J = 9.2$, 5.6 Hz, 1 H), 2.88 (dt, $J = 9.2$, 5.6 Hz, 1 H), 2.48 (t, $J = 7.2$ Hz, 2 H), 2.42 (s, 3 H), 1.96-1.86 (m, 1 H), 1.83-1.72 (m, 1 H), 1.59 (d, $J = 7.2$, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 174.5, 135.0, 128.8, 126.7, 123.9, 122.7, 118.7, 114.7, 111.1, 42.8, 42.4, 31.9, 21.6, 17.7, 16.8. HRMS (EI) Calcd for C$_{15}$H$_{18}$N$_2$O: [M$^+$] 242.1419; Found, 242.1427; IR ν (KBr) 3178, 3055, 2976, 2927, 1561, 1498, 1441, 1384, 1289, 1198, 1117, 792, 772, 662 cm$^{-1}$; mp: 171-173 °C.
1-(1-(6-methyl-1H-indol-3-yl)ethyl)pyrrolidin-2-one [T 2-3d, New compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 8.70 (s, 1 H), 7.50 (d, $J = 8.0$ Hz, 1 H), 7.17 (s, 1 H), 7.05 (s, 1 H), 6.93 (d, $J = 8.4$ Hz, 1 H), 5.72 (q, $J = 7.0$ Hz, 1 H), 3.26 (dt, $J = 8.8$, 5.6 Hz, 1 H), 2.87 (dt, $J = 9.4$, 5.8 Hz, 1 H), 2.52-2.38 (m, 5 H), 1.96-1.85 (m, 1 H), 1.83-1.71 (m, 1 H), 1.58 (d, $J = 6.8$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 174.5, 137.2, 132.0, 124.3, 122.0, 121.4, 118.8, 115.2, 111.4, 42.9, 42.3, 31.9, 21.7, 17.7, 16.7. HRMS (EI) Calcd for C$_{15}$H$_{18}$N$_2$O: [M]$^+$ 242.1419; Found, 242.1421; IR ν (KBr) 3175, 3053, 2962, 2924, 1651, 1493, 1440, 1384, 1288, 1200, 1114, 795 cm$^{-1}$; mp: 134-136 °C.
1-(1-(7-methyl-1H-indol-3-yl)ethyl)pyrrolidin-2-one [T 2-3e, New compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 8.25 (s, 1 H), 7.48 (d, $J = 9.2$ Hz, 1 H), 7.14 (s, 1 H), 7.05-7.01 (m, 2 H), 5.78 (q, $J = 7.0$ Hz, 1 H), 3.27 (dt, $J = 9.0$, 6.0 Hz, 1 H), 2.87 (dt, $J = 9.2$, 5.4 Hz, 1 H), 2.50 (s, 3 H), 2.46-2.41 (m, 2 H), 1.96-1.85 (m, 1 H), 1.84-1.76 (m, 1 H), 1.59 (d, $J = 6.8$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 174.6, 136.1, 126.0, 122.8, 122.1, 120.1, 120.0, 117.0, 116.2, 42.8, 42.3, 31.8, 17.7, 17.0. HRMS (EI) Calcd for C$_{15}$H$_{18}$N$_2$O: [M]$^+$ 242.1419; Found, 242.1420; IR ν (KBr) 3222, 3057, 2971, 2929, 1649, 1497, 1444, 1382, 1290, 1201, 1122, 788, 749, 671 cm$^{-1}$; mp: 191-193 °C.
1-(1-(5-methoxy-1H-indol-3-yl)ethyl)pyrrolidin-2-one [T 2-3f, New Compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/8).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 9.43 (s, 1 H), 7.24 (d, J = 8.4 Hz, 1 H), 7.09 (s, 2 H), 6.81 (d, J = 8.8 Hz, 1 H), 5.73 (q, J = 6.8 Hz, 1 H), 3.77(s, 3H), 3.23 (dt, J = 9.6, 6.0 Hz, 1 H), 2.83 (dt, J = 8.8, 6.0 Hz, 1 H), 2.51-2.36 (m, 2 H), 1.94-1.83 (m, 1 H), 1.81-1.70 (m, 1 H), 1.55 (d, J = 7.2, 3 H);

13C NMR (100 MHz, CDCl$_3$) δ 174.5, 153.9, 131.8, 126.8, 123.1, 115.0, 112.4, 112.2, 100.6, 55.7, 42.8, 42.2, 31.8, 17.7, 16.6. HRMS (EI) Calcd for C$_{15}$H$_{18}$N$_2$O$_2$: [M]$^+$ 258.1386; Found, 258.1365;

IR ν (KBr) 3184, 3039, 2946, 2931, 1650, 1575, 1484, 1440, 1285, 1206, 1170, 1117, 1038, 1024, 801, 709, 668 cm$^{-1}$; mp: 147-149 °C.
1-(1-(2-methyl-1H-indol-3-yl)ethyl)pyrrolidin-2-one \[T 2-3g, \text{ New compound } \]
Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 8.81 (s, 1 H), 7.73 (d, $J = 7.6$ Hz, 1 H), 7.30 (d, $J = 7.2$ Hz, 1 H), 7.15-7.08 (m, 2 H), 5.79 (q, $J = 7.4$ Hz, 1 H), 3.59 (dt, $J = 9.2$, 5.6 Hz, 1 H), 3.17 (dt, $J = 9.0$, 5.8 Hz, 1 H), 2.50 (s, 3 H), 2.44-2.31 (m, 2 H), 2.01-1.91 (m, 1 H), 1.88-1.79 (m, 1 H), 1.75 (d, $J = 7.2$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 174.0, 135.2, 133.6, 127.9, 120.8, 119.3, 119.1, 110.7, 110.2, 43.6, 43.5, 31.5, 17.7, 17.6, 12.6. HRMS (EI) Calcd for C$_{15}$H$_{18}$N$_2$O : [M]$^+$ 242.1419; Found, 242.1425; IR ν (KBr) 3316, 3030, 2974, 2933, 1659, 1491, 1459, 1435, 1384, 1288, 1200, 1052, 748, 648 cm$^{-1}$; mp: 185-187 °C.
1-(1-(2-phenyl-1H-indol-3-yl)ethyl)pyrrolidin-2-one [T 2-3h, New compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/dichloromethane=1/15).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 8.68 (s, 1 H), 7.84 (d, $J = 8.0$ Hz, 1 H), 7.49-7.37 (m, 6 H), 7.22 (t, $J = 7.6$ Hz, 1 H), 7.15 (t, $J = 7.4$ Hz, 1 H), 5.71 (q, $J = 6.8$ Hz, 1 H), 3.62 (q, $J = 8.2$ Hz, 1 H), 3.27 (dt, $J = 8.8$, 5.2 Hz, 1 H), 2.37 (m, 2 H), 2.00-1.90 (m, 1 H), 1.88-1.77 (m, 1 H), 1.61 (d, $J = 7.6$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 173.7, 136.9, 135.9, 132.5, 129.1, 128.7, 128.4, 127.9, 122.1, 120.5, 120.0, 111.3, 111.1, 44.8, 44.5, 31.5, 18.2, 17.9. HRMS (EI) Calcd for C$_{20}$H$_{20}$N$_2$O: [M]$^+$ 304.1576; Found, 304.1585; IR ν (KBr) 3169, 3106, 3066, 2977, 2930, 1660, 1491, 1457, 1423, 1311, 1287, 1200, 1097, 775, 743, 698 cm$^{-1}$; mp: 168-170 °C.
1-(1-(5-bromo-1H-indol-3-yl)ethyl)pyrrolidin-2-one [T 2-3i, New Compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 9.35 (s, 1 H), 7.71 (s, 1 H), 7.25 (t, J = 9.2 Hz, 2 H), 7.15 (s, 1 H), 5.69 (q, J = 6.8 Hz, 1 H), 3.25 (dt, J = 8.8, 6.0 Hz, 1 H), 2.83 (dt, J = 8.8, 5.8 Hz, 1 H), 2.45 (t, J = 8.6 Hz, 2 H), 1.97-1.86 (m, 1 H), 1.85-1.74 (m, 1 H), 1.56 (d, J = 7.2 Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 174.5, 135.3, 128.1, 125.1, 123.7, 121.7, 115.3, 113.0, 112.9, 42.6, 42.3, 31.7, 17.7, 16.7. HRMS (EI) Calcd for C$_{14}$H$_{13}$BrN$_2$O: [M]** 306.0368; Found, 306.0367; IR ν (KBr) 3150, 3032, 2967, 2932, 1650, 1489, 1440, 1384, 1290, 1196, 1120, 1052, 885, 793, 675 cm$^{-1}$; mp: 175-177 °C.
3-(1-(2-oxopyrrolidin-1-yl)ethyl)-1H-indole-5-carbonitrile \[T 2-3j\], New compound

Following the typical procedure \(A \) and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/6).

\(^1\)H NMR (400 MHz, \(\text{C}_2\text{D}_6\text{SO}, \text{TMS} \)) \(\delta \) 11.62 (s, 1 H), 7.86 (s, 1 H), 7.55 (s, 1 H), 7.51 (d, \(J = 8.4 \) Hz ,1 H), 7.41 (d, \(J = 8.4 \) Hz, 1 H), 5.51 (q, \(J = 6.8 \) Hz, 1 H), 3.26 (q, \(J = 8.6 \) Hz, 1 H), 2.69 (dt, \(J = 8.8, 5.8 \) Hz, 1 H), 2.31-2.16 (m, 2 H), 1.87-1.76 (m, 1 H), 1.72-1.61 (m, 1 H), 1.50 (d, \(J = 7.2 \) Hz, 3 H); \(^{13}\)C NMR (100 MHz, \(\text{C}_2\text{D}_6\text{SO} \)) \(\delta \) 173.6, 138.6, 126.5, 126.3, 124.5, 121.2, 116.4, 113.3, 101.3, 41.8, 41.7, 31.4, 17.7, 17.1. HRMS (EI) Calcd for \(\text{C}_{15}\text{H}_{15}\text{N}_{3}\text{O} \): \([\text{M}]^+\) 253.1215; Found, 253.1223; IR \(\nu \) (KBr) 3135, 3015, 2961, 2901, 2218, 1647, 1488, 1454, 1383, 1295, 1202, 1167, 1169, 802, 723, 652 cm\(^{-1}\); mp: 235-237 °C.
1-(1-(5-nitro-1H-indol-3-yl)ethyl)pyrrolidin-2-one [T 2-3k, New compound]

Following the typical procedure A and the desired product as a yellow solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/6).

$^1\text{H} \text{NMR (400 MHz, C}_2\text{D}_6\text{SO, TMS)} \delta 11.78 \text{ (s, 1 H), 8.43 \text{ (s, 1 H), 7.97 \text{ (d, J = 8.6 Hz, 1 H), 7.62 \text{ (s, 1 H), 7.51 \text{ (d, J = 9.2 Hz, 1 H), 5.56 \text{ (q, J = 7.0 Hz, 1 H), 3.27 \text{ (dt, J = 8.6, 5.6 Hz, 1 H), 2.69 \text{ (dt, J = 8.8, 5.8 Hz, 1 H), 2.28-2.21 \text{ (m, 2 H), 1.86-1.76 \text{ (m, 1 H), 1.72-1.62 \text{ (m, 1 H), 1.51 \text{ (d, J = 7.2 Hz, 3 H);}}}}}}}$

$^{13}\text{C NMR (100 MHz, C}_2\text{D}_6\text{SO) \delta 173.6, 140.9, 140.0, 127.7, .125.8, 118.0. 117.3. 113.2, 112.4, 41.8, 41.7, 31.4, 17.7, 17.1. \text{HRMS (EI) Calcd for C}_{14}\text{H}_{15}\text{N}_3\text{O}_3: [M]^{+} 273.1113; Found, 273.1117; IR }\nu \text{ (KBr) 3113, 2977, 2907, 1645, 1519, 1480, 1447, 1381, 1334, 1296, 1200, 1122, 814, 739, 656 \text{ cm}^{-1}; mp: 248-250 ^\circ \text{C.}}$
methyl 3-(1-(2-oxoprolidin-1-yl)ethyl)-1H-indole-4-carboxylate [T 2-3l, New compound]

Following the typical procedure A and the desired product as a yellow solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/6).

1H NMR (400 MHz, C$_2$D$_2$SO, TMS) δ 11.48 (s, 1 H), 7.59 (d, $J = 8.0$ Hz, 1 H), 7.49 (s, 1 H), 7.28 (d, $J = 7.2$ Hz, 1 H), 7.15 (t, $J = 7.8$ Hz, 1 H), 5.54 (q, $J = 7.0$ Hz, 1 H), 3.81 (s, 3 H), 2.98 (q, $J = 7.8$ Hz, 1 H), 2.46 (dt, $J = 9.6$, 4.8 Hz, 1 H), 2.16 (t, $J = 8.4$ Hz, 2 H), 1.78-1.68 (m, 1 H), 1.67-1.59 (m, 1 H), 1.43 (d, $J = 6.4$ Hz, 3 H); 13C NMR (100 MHz, C$_2$D$_2$SO) δ 173.3, 169.2, 137.9, 126.3, 124.8, 122.6, 121.0, 120.8, 115.6, 115.2, 52.6, 44.0, 42.9, 31.8, 18.0, 17.5. HRMS (EI) Calcd for C$_{16}$H$_{18}$N$_{2}$O$_{3}$: [M]$^+$ 286.1317; Found, 286.1314; IR ν (KBr) 3143, 3039, 2974, 2946, 1719, 1649, 1437, 1344, 1289, 1195, 1144, 1112, 779, 755, 664 cm$^{-1}$; mp: 191-193 °C.
1-(1-(1-methyl-1H-indol-3-yl)ethyl)pyrrolidin-2-one [T 2-3m, New compound]

Following the typical procedure A and the desired product as a pale yellow oil after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/40).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.61 (d, $J = 8.4$ Hz, 1 H), 7.27-7.19 (m, 2 H), 7.07 (t, $J = 7.4$ Hz, 1 H), 6.96 (s, 1 H), 5.76 (q, $J = 7.0$ Hz, 1 H), 3.72 (s, 3 H), 3.23 (dt, $J = 8.4$, 6.0 Hz, 1 H), 2.85 (dt, $J = 8.8$, 5.8 Hz, 1 H), 2.42-2.37 (m, 2 H), 1.92-1.81 (m, 1 H), 1.78-1.68 (m, 1 H), 1.57 (d, $J = 7.2$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 174.1, 137.2, 126.9, 126.8, 122.0, 119.6, 119.4, 114.5, 109.2, 42.5, 42.2, 32.8, 31.8, 17.7, 16.7. HRMS (EI) Calcd for C$_{15}$H$_{18}$N$_2$O: [M]$^+$ 242.1419; Found, 242.1410; IR ν (KBr) 3055, 2973, 2936, 1671, 1551, 1463, 1423, 1375, 1285, 1215, 1098, 876, 742 cm$^{-1}$.

Spectrogram: VWD

![Spectrogram Image]

Spectrogram: NMR

![NMR Image]
(E1-(1-(1-phenyl-1H-indol-3-yl)ethyl)pyrrolidin-2-one \[T 2-3n, \text{New compound} \])

Following the typical procedure A and the desired product as a colorless oil after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/40).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.71 (d, $J = 8.0$ Hz, 1 H), 7.56-7.49 (m, 5 H), 7.38-7.34 (m, 1 H), 7.28 (s, 1 H), 7.24 (t, $J = 7.6$ Hz, 1 H), 7.17 (t, $J = 7.6$ Hz, 1 H), 5.85 (q, $J = 6.8$ Hz, 1 H), 3.32 (dt, $J = 9.0$, 5.8 Hz, 1 H), 3.00 (dt, $J = 9.2$, 5.6 Hz, 1 H), 2.49-2.44 (m, 2 H), 1.99-1.89 (m, 1 H), 1.88-1.77 (m, 1 H), 1.64 (d, $J = 7.2$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 174.2, 139.5, 136.3, 129.7, 127.8, 126.5, 125.8, 124.2, 122.9, 120.6, 120.0, 117.2, 110.5, 42.4, 42.2, 31.7, 17.8, 16.7.

HRMS (EI) Calcd for C$_{20}$H$_{20}$N$_2$O: [M]$^+$ 304.1576; Found, 304.1577; IR ν (KBr) 3058, 2973, 2902, 1678, 1597, 1501, 1458, 1421, 1377, 1283, 1228, 1203, 1140, 744 cm$^{-1}$.
1-(1-(1-methyl-2-phenyl-1H-indol-3-yl)ethyl)pyrrolidin-2-one [T 2-3o, New Compound]

Following the typical procedure A and the desired product as a colorless oil after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/40).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.82 (d, $J = 8.0$ Hz, 1 H), 7.52-7.45 (m, 3 H), 7.37-7.33 (m, 3 H), 7.28 (t, $J = 8.2$ Hz, 1 H), 7.18 (t, $J = 7.4$ Hz, 1 H), 5.60 (q, $J = 7.4$ Hz, 1 H), 3.51 (s, 3 H), 3.47 (dt, $J = 8.8$, 6.0 Hz, 1 H), 3.19 (dt, $J = 9.0$, 5.6 Hz, 1 H), 2.41-2.27 (m, 2 H), 1.97-1.87 (m, 1 H), 1.86-1.75 (m, 1 H), 1.47 (d, $J = 7.6$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 173.5, 139.3, 136.9, 131.8, 130.9, 128.8, 128.4, 126.9, 121.8, 120.1, 119.8, 111.5, 109.6, 44.6, 44.0, 31.6, 30.7, 18.2, 17.8. HRMS (El) Calcd for C$_{21}$H$_{22}$N$_2$O: [M]$^+$ 318.1732; Found, 318.1730; IR ν (KBr) 3053, 2974, 2935, 1679, 1468, 1420, 1365, 1282, 1201, 1084, 1022, 810, 742, 701 cm$^{-1}$.
3-(1-(2-oxopyrrolidin-1-yl)ethyl)indolizine-1-carbonitrile [T 2-3p, New Compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 8.12 (d, $J = 7.2$ Hz, 1 H), 7.64 (d, $J = 8.8$ Hz, 1 H), 7.10 (t, $J = 8.0$ Hz, 1 H), 7.02 (s, 1 H), 6.79 (t, $J = 7.0$ Hz, 1 H), 5.73 (q, $J = 7.0$ Hz, 1 H), 3.31 (q, $J = 8.4$ Hz, 1 H), 2.65 (dt, $J = 9.4$, 5.0 Hz, 1 H), 2.50-2.34 (m, 2 H), 2.02-1.91 (m, 1 H), 1.85-1.74 (m, 1 H), 1.64 (d, $J = 6.8$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 174.7, 138.5, 124.8, 124.1, 122.7, 117.8, 116.8, 115.4, 113.5, 80.7, 41.8, 41.4, 31.2, 17.6, 16.1. HRMS (EI) Calcd for C$_{15}$H$_{15}$N$_{3}$O: [M]$^+$ 253.1215; Found, 253.1217; IR ν (KBr) 3021, 2946, 2847, 2203, 1668, 1513, 1432, 1384, 1303, 1289, 1207, 1165, 1118, 836, 749, 682 cm$^{-1}$; mp: 187-190 °C.
methyl 3-(1-(2-oxopyrrolidin-1-yl)ethyl)indolizine-1-carboxylate [T 2-3q, New compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 8.16 (d, $J = 9.2$ Hz, 1 H), 8.03 (d, $J = 6.8$ Hz, 1 H), 7.24 (s, 1 H), 7.07 (t, $J = 7.8$ Hz, 1 H), 6.74 (t, $J = 6.8$ Hz, 1 H), 5.69 (q, $J = 7.2$ Hz, 1 H), 3.86 (s, 3 H), 3.27 (dt, $J = 9.0$, 6.6 Hz, 1 H), 2.61 (dt, $J = 9.0$, 5.2 Hz, 1 H), 2.47-2.32 (m, 2 H), 1.96-1.86 (m, 1 H), 1.80-1.69 (m, 1 H), 1.63 (d, $J = 6.8$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 174.6, 165.2, 136.4, 124.3, 123.4, 122.7, 119.7, 115.0, 113.0, 102.5, 50.9, 41.9, 41.6, 31.3, 17.6, 16.1. HRMS (EI) Calcd for C$_{16}$H$_{18}$N$_2$O$_3$: [M]$^+$ 286.1317; Found, 286.1322; IR ν (KBr) 3095, 2989, 2951, 1685, 1664, 1511, 1454, 1420, 1294, 1218, 1114, 1054, 856, 778, 752, 726 cm$^{-1}$; mp: 107-109 °C.
Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2010

2-methyl-3-(1-(2-oxopyrrolidin-1-yl)ethyl)indolizine-1-carbonitrile [T 2-3r, New Compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 8.10 (d, J = 6.8 Hz, 1 H), 7.52 (t, J = 8.6 Hz, 1 H), 7.06-7.01 (m, 1 H), 6.73 (t, J = 6.4 Hz, 1 H), 5.78 (q, J = 7.6 Hz, 1 H), 3.41 (dt, J = 8.6, 6.2 Hz, 1 H), 2.75 (dt, J = 9.0, 5.0 Hz, 1 H), 2.50 (s, 1 H), 2.45-2.29 (m, 2 H), 2.01 -1.91 (m, 1 H), 1.86-1.77 (m, 1 H), 1.73 (d, J = 7.2 Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 174.4, 136.9, 126.8, 124.4, 122.4, 119.3, 117.0, 116.6, 113.2, 83.9, 42.7, 42.2, 31.0, 17.5, 16.4, 12.3. HRMS (EI) Calcd for C$_{16}$H$_{17}$N$_3$O: [M]$^+$ 267.1372; Found, 267.1370; IR ν (KBr) 3040, 2969, 2889, 2203, 1669, 1515, 1420, 1281, 1211, 1151, 1092, 745, 651 cm$^{-1}$; mp: 162-164 °C.
1-(1-(1H-indol-3-yl)ethyl)azepan-2-one [T 3-4a, New compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/10).

1H NMR (400 MHz, C$_2$D$_6$SO, TMS) δ 10.97 (s, 1 H), 7.37 (d, $J = 7.6$ Hz, 1 H), 7.34-7.32 (m, 2 H), 7.04 (t, $J = 7.6$ Hz, 1 H), 6.93 (t, $J = 7.4$ Hz, 1 H), 6.04 (q, $J = 7.2$ Hz, 1 H), 3.11-3.05 (m, 1 H), 3.00-2.94 (m, 1 H), 2.45-2.43 (m, 2 H), 1.50 (m, 3 H), 1.41 (d, $J = 6.8$ Hz, 4 H), 1.16-0.92 (m, 2 H);

13C NMR (100 MHz, CDCl$_3$) δ 175.7, 136.7, 126.7, 123.0, 122.1, 119.5, 119.4, 116.1, 111.4, 45.2, 42.9, 37.8, 30.0, 28.9, 23.4, 17.1. HRMS (EI) Calcd for C$_{16}$H$_{20}$N$_2$O: [M]$^+$ 256.1576; Found, 256.1580; IR ν (KBr) 3169, 3047, 2972, 2931, 1612, 1482, 1444, 1383, 1336, 1181, 1118, 979, 843, 768, 747, 635 cm$^{-1}$; mp: 131-133 °C.
1-(1-(1-methyl-1H-indol-3-yl)ethyl)azepan-2-one [T 3-4b, New compound]

Following the typical procedure A and the desired product as a pale yellow oil after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/40).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.58 (d, $J = 7.6$ Hz, 1 H), 7.25-7.17 (m, 2 H), 7.06 (t, $J = 7.4$ Hz, 1 H), 6.94 (s, 1 H), 6.27 (q, $J = 7.2$ Hz, 1 H), 3.72 (s, 3 H), 3.15-3.01 (m, 1 H), 3.02-2.97 (m, 3 H), 2.57 (t, $J = 5.6$ Hz, 2 H), 1.66-1.55 (m, 3 H), 1.48 (d, $J = 7.2$ Hz, 4 H), 1.31-1.13 (m, 2 H); 13C NMR (100 MHz, CDCl$_3$) δ 175.3, 137.2, 127.2, 127.1, 121.9, 119.9, 119.2, 115.3, 109.1, 44.8, 42.8, 37.8, 32.7, 30.0, 29.0, 23.5, 17.1. HRMS (EI) Calcd for C$_{17}$H$_{22}$N$_2$O: [M]$^+$ 270.1732; Found, 270.1739; IR ν (KBr) 3053, 2929, 2856, 1665, 1630, 1553, 1474, 1442, 1366, 1331, 1183, 1084, 976, 741 cm$^{-1}$.

![Spectrum](image1)

![Spectrum](image2)
methyl 3-(1-(2-oxazepan-1-yl)ethyl)indolizine-1-carboxylate [T 3-4c, New compound]

Following the typical procedure A and the desired product as a colorless oil after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 8.10 (d, J = 8.8 Hz, 1 H), 7.92 (d, J = 6.8 Hz, 1 H), 7.21 (s, 1 H), 7.02 (t, J = 7.8 Hz, 1 H), 6.69 (t, J = 6.6 Hz, 1 H), 6.15 (q, J = 7.2 Hz, 1 H), 3.82 (s, 3 H), 3.08-3.02 (m, 1 H), 2.96-2.90 (m, 1 H), 2.53-2.46 (m, 2 H), 1.67-1.58 (m, 1 H), 1.51 (d, J = 7.2 Hz, 3 H), 1.27-1.16 (m, 3 H), 0.56 (m, 1 H), 0.50 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$) δ 175.8, 165.0, 136.2, 124.5, 124.2, 122.5, 119.5 115.4, 112.8, 102.5, 50.8, 43.7, 42.6, 37.4, 29.6, 28.5, 23.3, 16.4.

HRMS (EI) Calcd for C$_{18}$H$_{22}$N$_2$O$_3$: [M]$^+$ 314.1630; Found, 314.163; IR ν (KBr) 3046, 2932, 2856, 1694, 1632, 1544, 1151, 1443, 1415, 1380, 1292, 1222, 1183, 1147, 1111, 1053, 977, 925, 855, 847, 778, 764 cm$^{-1}$.

![NMR Spectrogram of methyl 3-(1-(2-oxazepan-1-yl)ethyl)indolizine-1-carboxylate](image)
N-(1-(1H-indol-3-yl)ethyl)acetamide [T 3-5a, New compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluent: ethyl ethyl acetate/ petrol ether =1/1).

1H NMR (400 MHz, C$_2$D$_6$SO, TMS) δ 10.94 (s, 1 H), 8.31 (d, J= 8.0 Hz, 1 H), 8.03 (s, 1 H), 7.34 (d, J = 8.4 Hz, 1 H), 7.29 (d, J= 8.0 Hz, 1 H), 7.27 (s, 1 H), 7.09 (t, J = 7.6 Hz, 1 H), 6.99 (t, J = 7.4 Hz, 1 H), 5.34 (qui, J= 7.2 Hz, 1 H), 1.51 (d, J= 6.8 Hz, 3 H); 13C NMR (100 MHz, C$_2$D$_6$SO) δ 160.3, 136.9, 126.2, 122.4, 121.6, 119.3, 118.9, 117.5, 111.9, 39.7, 21.4. HRMS (EI) Calcd for C$_{11}$H$_{12}$N$_2$O: [M$^+$] 188.0950; Found, 188.0944; IR ν (KBr) 3284, 3043, 2981, 2924, 1637, 1535, 1455, 1429, 1384, 1228, 1117, 1080, 1010, 891, 817, 738, 627 cm$^{-1}$; Mixture of isomers due to C-N hindered rotation. mp: 110-112 °C.
N-(1-(1-methyl-1H-indol-3-yl)ethyl)formamide [**T 3-5b, New compound**]

Following the typical procedure **A** and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ petrol ether =1/1).

\[^1\text{H NMR (400 MHz, C}_2\text{D}_6\text{SO, TMS) }\delta 8.31 (d, J = 8.0 \text{ Hz, } 1 \text{ H}), 8.05 (s, 1 \text{ H}), 7.59 (d, J = 8.4 \text{ Hz, } 1 \text{ H}), 7.40 (d, J = 8.0 \text{ Hz, } 1 \text{ H}), 7.26 (s, 1 \text{ H}), 7.17 (t, J = 7.6 \text{ Hz, } 1 \text{ H}), 7.05 (t, J = 7.4 \text{ Hz, } 1 \text{ H}), 5.35 (\text{qui}, J = 7.2 \text{ Hz, } 1 \text{ H}), 3.74 (s, 3 \text{ H}), 1.52 (d, J = 6.8 \text{ Hz, } 3 \text{ H})]**

\[^{13}\text{C NMR (100 MHz, C}_2\text{D}_6\text{SO) }\delta 160.3, 137.3, 126.9, 126.5, 121.8, 119.5, 119.1, 116.8, 110.1, 39.6, 32.7, 21.4. HRMS (EI) Calcd for C\textsubscript{12}H\textsubscript{14}N\textsubscript{2}O: [M+] 202.1106; Found, 202.1101; IR \nu (KBr) 3257, 3050, 2966, 2925, 1650, 1542, 1475, 1333, 1233, 732, 674 cm-1; Mixture of isomers due to C-N hindered rotation. mp: 107-109 \degree \text{C}.**
methyl 3-(1-formamidoethyl)indolizine-1-carboxylate [T 3-5c, New Compound]

Following the typical procedure A and the desired product as a white solid after purification by flash chromatography (eluents: ethyl acetate/petrol ether = 1/1).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 8.16 (s, 1 H), 7.98 (d, J = 8.8 Hz, 1 H), 7.91 (d, J = 7.2 Hz, 1 H), 7.01 (s, 1 H), 7.00 (t, J = 7.6 Hz, 1 H), 6.69 (t, J = 6.8 Hz, 1 H), 6.44 (d, J = 9.2 Hz, 1 H), 5.50 (qui, J = 6.6 Hz, 1 H), 3.76 (s, 3 H), 1.64 (d, J = 6.8 Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 165.3, 160.7, 136.3, 125.0, 124.1, 122.7, 119.5, 113.9, 112.8, 102.3, 50.8, 38.4, 19.3. HRMS (EI) Calcd for C$_{13}$H$_{14}$N$_2$O$_3$: [M]$^+$ 246.1004; Found, 246.1014; IR ν (KBr) 3251, 3030, 2980, 2951, 1692, 1651, 1538, 1510, 1454, 1384, 1292, 1218, 1115, 1043, 839, 775, 739 cm$^{-1}$; mp: 146-148 °C.
N-(1-(1H-indol-3-yl)ethyl)-N-methylacetamide [T 3-6a, New Compound]

Following the typical procedure A and the desired product as a pale yellow solid after purification by flash chromatography (elucent: ethyl ethyl acetate/ petrol ether =1/1).

1H NMR (400 MHz, C$_2$D$_6$SO, TMS) δ 10.99 (s, 1 H), 7.39-7.31 (m, 3 H), 7.06 (t, $J = 7.6$ Hz, 1 H), 6.95 (t, $J = 7.4$ Hz, 1 H), 6.07 (q, $J = 7.2$ Hz, 1 H), 2.56 (s, 3 H), 2.02 (s, 3 H), 1.44 (d, $J = 7.2$ Hz, 3 H); 13C NMR (100 MHz, C$_2$D$_6$SO) δ 169.6, 136.9, 126.7, 124.0, 121.7, 119.7, 119.0, 115.3, 111.9, 43.8, 31.1, 22.6, 16.9. Isomer 1H NMR (400 MHz, C$_2$D$_6$SO, TMS) δ 11.08 (s, 0.35 H), 7.39-7.31 (m, 1 H), 7.11 (d, $J = 7.6$ Hz, 0.35 H), 7.00 (d, $J = 8.0$ Hz, 0.35 H), 5.31 (q, $J = 6.8$ Hz, 0.35 H), 2.43 (s, 1 H), 2.28 (s, 1 H), 1.57 (d, $J = 6.8$ Hz, 1 H); 13C NMR (100 MHz, C$_2$D$_6$SO) δ 169.4, 137.0, 126.4, 123.9, 121.6, 119.3, 118.9, 114.9, 112.1, 50.2, 27.6, 22.2, 18.3. HRMS (EI) Calcd for C$_{13}$H$_{16}$N$_2$O: [M$^+$] 216.1263; Found, 216.1268; IR (KBr) 3240, 3045, 2963, 2925, 1658, 1523, 1458, 1370, 1293, 1229, 1054, 768 cm$^{-1}$; Mixture of isomers due to C-N hindered rotation. mp: 89-91 °C.
N-methyl-N-(1-(1-methyl-1H-indol-3-yl)ethyl)acetamide [T 3-6b, New compound]

Following the typical procedure A and the desired product as a pale yellow solid after purification by flash chromatography (eluent: ethyl acetate/ petrol ether =1/1).

1H NMR (500 MHz, C$_2$D$_6$SO, TMS) δ 7.38 (t, $J=7.75$ Hz, 2 H), 7.33 (s, 1 H), 7.14 (t, $J=7.0$ Hz, 1 H), 6.99 (t, $J=7.25$ Hz, 1 H), 6.07 (q, $J=7.0$ Hz, 1 H), 3.76 (s, 3 H), 2.56 (s, 3 H), 2.01 (s, 3 H), 1.42 (d, $J=7.0$ Hz, 3 H); 13C NMR (125 MHz, C$_2$D$_6$SO) δ 169.6, 137.4, 128.5, 127.1, 121.9, 119.3, 119.2, 114.6, 110.1, 43.8, 32.9, 29.6, 22.6, 17.0. Isomer 1H NMR (500 MHz, C$_2$D$_6$SO, TMS) δ 7.42 (d, $J=7.5$ Hz, 0.35 H), 7. 34 (m, 0.7 H), 7.17 (t, $J=7.5$ Hz, 0.35 H), 7.04 (t, $J=7.75$ Hz, 0.35 H), 5.31 (q, $J=6.5$ Hz, 0.35 H), 3.77 (s, 1 H), 2.44 (s, 1 H), 2.27 (s, 1 H), 1.55 (d, $J=7.5$ Hz, 3 H); 13C NMR (125 MHz, C$_2$D$_6$SO) δ 169.4, 137.5, 128.4, 126.7, 121.9, 119.5, 119.0, 119.2, 114.3, 110.4, 50.1, 40.2, 27.1, 22.2, 18.4. HRMS (EI) Calcd for C$_{14}$H$_{18}$N$_2$O: [M$^+$] 230.1419; Found, 230.1413; IR ν (KBr) 3240, 3032, 2973, 2925, 1660, 1461, 1414, 1370, 1288, 1230, 1194, 1114, 780 cm$^{-1}$; Mixture of isomers due to C-N hindered rotation. mp: 106-108 °C.
methyl 3-(1-(N-methylacetamido)ethyl)indolizine-1-carboxylate [T 3-6c, New compound]

Following the typical procedure A and the desired product as a colorless oil after purification by flash chromatography (eluent: ethyl acetate/ dichloromethane=1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 8.10 (d, $J = 8.8$ Hz, 1 H), 7.91 (d, $J = 7.2$ Hz, 1 H), 7.21 (s, 1 H), 7.01 (t, $J = 7.8$ Hz, 1 H), 6.67 (t, $J = 6.8$ Hz, 1 H), 6.19 (q, $J = 6.8$ Hz, 1 H), 3.81 (s, 3 H), 2.50 (s, 3 H), 2.04 (s, 3 H), 1.52 (d, $J = 6.8$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 170.8, 165.2, 136.4, 124.4, 123.8, 122.6, 119.6, 115.6, 112.9, 102.5, 50.8, 43.4, 29.5, 22.2, 15.9. HRMS (EI) Calcd for C$_{15}$H$_{18}$N$_2$O$_3$: [M$^+$] 274.1317; Found, 274.1325; IR ν (KBr) 3105, 2973, 2948, 1693, 1634, 1544, 1222, 1140, 1053, 1015, 926, 777 cm$^{-1}$.

[Chemical structures and spectra images are included here for the compound's structure and NMR profiles.]
3-(1-(1H-indol-3-yl)ethyl)-1H-indole [T 4-7a, Ref 1]

Following the typical procedure B and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/petrol ether = 1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.75 (s, 2 H), 7.63 (d, $J = 7.2$ Hz, 2 H), 7.34 (d, $J = 8.0$ Hz, 2 H), 7.22 (t, $J = 7.4$ Hz, 2 H), 7.10 (t, $J = 7.6$ Hz, 2 H), 6.84 (s, 2 H), 4.72 (q, $J = 7.2$ Hz, 1 H), 1.85 (d, $J = 7.2$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 136.6, 126.9, 121.8, 121.6, 121.3, 119.7, 119.0, 111.5, 28.2, 21.8.
5-methyl-3-(1-(5-methyl-1H-indol-3-yl)ethyl)-1H-indole [T4-7b, New compound]

Following the typical procedure B and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/petrol ether =1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.57 (s, 2 H), 7.49 (s, 2 H), 7.23 (d, J = 8.4 Hz, 2 H), 7.09 (d, J= 8.4 Hz, 2 H), 6.78 (s, 2 H), 4.70 (q, J = 7.0 Hz, 1 H), 2.51 (s, 6 H), 1.86 (d, J= 7.2 Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 135.0, 128.2, 127.5, 123.4, 121.6, 121.1, 119.4, 110.8, 28.1, 21.8, 21.6.

HRMS (EI) Calcd for C$_{20}$H$_{20}$N$_2$: [M$^+$] 288.1626; Found, 288.1613; IR ν (KBr) 3412, 3030, 2964, 2921, 1481, 1454, 1419, 1384, 1339, 1224, 1091, 1032, 865, 794, 766 cm$^{-1}$; mp: 141-143 °C.
5-bromo-3-(1-(5-bromo-1H-indol-3-yl)ethyl)-1H-indole [T 4-7c, New compound]

Following the typical procedure B and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/petrol ether =1/6).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.92 (s, 2 H), 7.64 (s, 2 H), 7.24 (d, $J = 9.2$ Hz, 2 H), 7.20 (d, $J = 8.4$ Hz, 2 H), 6.91 (s, 2 H), 6.84 (s, 2 H), 4.52 (q, $J = 7.2$ Hz, 1 H), 1.75 (d, $J = 7.2$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 135.3, 128.5, 124.7, 122.5, 122.1, 120.7, 112.7, 112.4, 28.1, 21.5.

HRMS (EI) Calcd for C$_{18}$H$_{14}$Br$_2$N$_2$: [M$^+$] 415.9524; Found, 415.9521; IR ν (KBr) 3406, 2980, 2925, 1452, 1415, 1384, 1217, 1096, 1050, 985, 882, 802, 671 cm$^{-1}$; mp:152-154 °C.
3-(1-(5-cyano-1H-indol-3-yl)ethyl)-1H-indole-5-carbonitrile [T 4-7d, New compound]

Following the typical procedure B and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ petrol ether =1/6).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 11.42 (s, 2 H), 7.93 (s, 2 H), 7.51 (s, 2 H), 7.46 (d, J = 8.8 Hz, 2 H), 7.34 (d, J= 8.8 Hz, 2 H), 4.65 (q, J = 7.0 Hz, 1 H), 1.73 (d, J = 7.6 Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 138.7, 126.4, 125.0, 124.0, 121.3, 121.1, 113.2, 100.5, 27.7, 21.9. HRMS (EI) Calcd for C$_{20}$H$_{14}$N$_4$: [M$^+$] 310.1218; Found, 310.1218; IR ν (KBr) 3384, 2964, 2926, 2218, 1617, 1471, 1430, 1384, 1356, 1171, 1089, 1012, 805, 760 cm$^{-1}$; mp: 96-98 ºC.
2-phenyl-3-(1-(2-phenyl-1H-indol-3-yl)ethyl)-1H-indole [T 4-7e, Ref 2]

Following the typical procedure B and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/petrol ether =1/10).

1H NMR (400 MHz, C$_2$D$_6$SO, TMS) δ 11.14 (s, 2 H), 7.54 (d, $J = 7.6$ Hz, 2 H), 7.45 (d, $J = 6.4$ Hz, 2 H), 7.32 (m, 8 H), 7.01 (t, $J = 6.6$ Hz, 2 H), 7.82 (t, $J = 6.8$ Hz, 2 H), 4.90 (q, $J = 6.8$ Hz, 1 H), 1.86 (d, $J = 6.4$ Hz, 3 H); 13C NMR (100 MHz, C$_2$D$_6$SO) δ 13.65, 134.6, 134.0, 129.0, 128.7, 127.7, 121.2, 121.1, 18.8, 116.9, 111.7, 29.5, 23.6.
1-methyl-3-(1-(1-methyl-1H-indol-3-yl)ethyl)-1H-indole [T 4-7f, Ref 3]

Following the typical procedure B and the desired product as a colorless oil after purification by flash chromatography (eluent: ethyl acetate/petrol ether = 1/40).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 7.93 (d, $J = 8.4$ Hz, 2 H), 7.56-7.49 (m, 4 H), 7.37 (t, $J = 7.4$ Hz, 2 H), 7.06 (s, 2 H), 5.01 (q, $J = 7.2$ Hz, 1 H), 3.87 (s, 6 H), 2.14 (d, $J = 7.2$ Hz, 3 H); 13C NMR (100 MHz, CDCl$_3$) δ 137.6, 127.6, 126.3, 121.6, 120.6, 120.1, 118.8, 109.5, 32.7, 28.4, 22.6.
3-(1-(1-methyl-1\textit{H}-indol-3-yl)ethyl)-1\textit{H}-indole [T 4-7g, New Compound]

Following the typical procedure B and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/petrol ether =1/10).

\(^1\)H NMR (500 MHz, CDCl\(_3\), TMS) \(\delta\) 7.81 (s, 1 H), 7.64 (d, \(J = 8.0\) Hz, 2 H), 7.34 (t, \(J = 7.0\) Hz, 2 H), 7.26 (t, \(J = 7.0\) Hz, 1 H), 7.22 (t, \(J = 7.0\) Hz, 1 H), 7.10 (t, \(J = 7.25\) Hz, 2 H), 6.93 (s, 1 H), 6.81 (s, 1 H), 4.73 (q, \(J = 6.75\) Hz, 1 H), 3.72 (s, 3 H), 1.85 (d, \(J = 6.5\) Hz, 3 H); \(^1^3\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 137.5, 136.8, 127.4, 127.1, 126.2, 121.9, 121.5, 121.4, 120.4, 120.0, 119.9, 119.2, 118.6, 111.3, 109.3, 32.8, 28.3, 22.2. HRMS (EI) Calcd for C\(_{19}\)H\(_{18}\)N\(_2\): [M+] 274.1470; Found, 274.1461; IR \(\nu\) (KBr) 3416, 3058, 2962, 2925, 1615, 1457, 1420, 1384, 1320, 1238, 1123, 1092, 1010, 810, 741 cm\(^{-1}\); mp: 67-69 °C.
3-(1-(5-bromo-1H-indol-3-yl)ethyl)-1H-indole [T 4-7h, Ref 4]

Following the typical procedure B and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ petrol ether =1/6).

1H NMR (400 MHz, C$_2$D$_6$SO, TMS) δ 11.00 (s, 1 H), 10.77 (s, 1 H), 7.56 (s, 1 H), 7.41 (d, J = 7.6 Hz, 1 H), 7.33-7.27 (m, 2 H), 7.24 (s, 1 H), 7.16 (s, 1 H), 7.10 (d, J = 8.4 Hz, 1 H), 7.00 (t, J = 7.6 Hz, 1 H), 6.85 (t, J = 7.4 Hz, 1 H), 4.54 (q, J = 6.8 Hz, 1 H), 1.71 (d, J= 7.6 Hz, 3 H); 13C NMR (100 MHz, C$_2$D$_6$SO) δ 137.1, 135.7, 128.7, 126.8, 123.5, 122.1, 121.6, 121.2, 120.3, 120.1, 119.5, 118.4, 113.8, 111.8, 111.0, 28.2, 22.2.
methyl 3-(1-(1-(methoxycarbonyl)indolizin-3-yl)ethyl)indolizine-1-carboxylate [T 4-7i, New Compord]

Following the typical procedure B and the desired product as a white solid after purification by flash chromatography (eluent: ethyl acetate/ petrol ether =1/10).

1H NMR (400 MHz, CDCl$_3$, TMS) δ 8.16 (d, J = 8.8 Hz, 2 H), 7.67 (d, J = 7.2 Hz, 2 H), 6.98-6.95 (m, 4 H), 6.63 (t, J = 6.8 Hz, 2 H), 4.53 (q, J = 6.8 Hz, 1 H), 3.81 (s, 6 H), 1.77 (d, J = 7.2 Hz, 3 H);

13C NMR (100 MHz, CDCl$_3$) δ 165.2, 136.5, 125.1, 123.0, 121.9, 120.0, 114.4, 112.6, 102.7, 50.8, 29.1, 17.4. HRMS (EI) Calcd for C$_{22}$H$_{20}$N$_2$O$_4$: [M$^+$] 376.1423; Found, 376.1430; IR ν (KBr) 3109, 2986, 2946, 1682, 1544, 1511, 1443, 1410, 1215, 1098, 1078, 1053, 926, 840, 777, 743 cm$^{-1}$; mp: 176-178 °C.
References

