- Supplementary Data -

Synthesis of Novel Deoxynucleoside S-methylphosphonic Acids using S-(Diisopropylphosphonomethyl)iso-thiouronium tosylate, a New Equivalent of Mercaptomethylphosphonate

Ivana Kóšiová, Miloš Buděšínský, Natalya Panova and Ivan Rosenberg

Institute of Organic Chemistry and Biochemistry, Academy of Sciences v. v. i., Flemingovo 2, 166 10 Prague 6, Czech Republic

Scheme 1

Scheme 2

Scheme 3
Scheme 4

(i) 2a, sodium iso-propoxide, DMF; (ii) 0.5 M TBAF, THF

Scheme 5

Experimental

General

The course of the reactions was followed by TLC on Merck Silica gel 60 F_{254} aluminum sheets and the products were visualized both by UV monitoring (254 nm) and by spraying with 1% ethanolic solution of 4-(4-nitrobenzyl)pyridine (PNBP) which, after short heating and exposing to ammonia vapors, showed the phosphonate esters as blue spots. Preparative column chromatography (PLC) was performed on silica gel (40-60 μm, Fluka). Elution was performed at the rate of 40 ml/min. PLC and TLC were carried out with the following solvent systems (v/v): chloroform-ethanol 9:1 (C-1), ethyl acetate-acetone-ethanol-water 4:1:1:1 (H-1), and ethyl acetate-acetone-ethanol-water 12:2:2:1 (H-3).

HPLC analyses were performed on Alliance (Waters) instrument using Luna C18 column (5 μm, 4.6 x 150 mm, Phenomenex) under gradient elution with acetonitrile in 0.1 M-triethylammonium acetate buffer (TEAA).

The preparative reversed-phase HPLC was performed on an Axia column (20x200 mm, Luna C18(2), 5 μm, Phenomenex), using a linear gradient of methanol in 0.1M triethylammonium hydrogencarbonate buffer.

The ion exchange chromatography was performed on a POROS 50 HQ (Appl. Biosys.) anion exchanger column in ammonium hydrogencarbonate,
MS HR ESI spectra (m/z) were recorded on LTQ Orbitrap XL (Thermo Fischer Scientific) instrument. IR spectra were recorded on FTIR spectrometer (Bruker Equinox 55, Germany). 1H and 13C NMR spectra were measured on Bruker AVANCE-600 spectrometer (1H at 600.13 MHz, 13C at 150.9 MHz) in DMSO or D$_2$O at 300 K. Chemical shifts and coupling constants were obtained from a first-order analysis of spectra. Signals in the 1H NMR spectra were assigned to protons on the basis of chemical shifts, observed multiplicities and homonuclear 2D-COSY experiments.

Diisopropyl phosphonomethylisothiouronium tosylate (2a)

A mixture of diisopropyl tosyloxymethylphosphonate1 (I, 20.0 g, 0.057 mol) and thiourea (6.5 g, 0.087 mol) in ethanol (200 ml) was heated under reflux for 18 h (TLC in C-1) and then concentrated at reduced pressure. The title product was precipitated from ethanol by diethyl ether.

Yield: 21.0 g (0.049 mol, 86 %); HRMS (M+H)$^+$ for C$_{8}$H$_{20}$N$_{2}$O$_{3}$PS: calcd m/z 255.0927, obs. 255.0927; IR (KBr, cm$^{-1}$): 3121, 2982, 1666, 1400, 1216, 1192, 1128, 1038, 1013, 996, 815, 690, 570.

1H NMR (D$_2$O): 1.36 (d, J = 6.2 Hz, 12H, 4x CH$_3$); 2.39 (bs, 3H, CH$_3$ (Tos)); 3.58 (d, 2H, J(H,P) = 12.6 Hz, S-CH$_2$-P); 4.80 (m, 2H, 2x O-CH<); 7.37 (m, 2H, Ar-H (Tos)); 7.68 (m, 2H, Ar-H (Tos)); 13C NMR (D$_2$O): 23.21 (CH$_3$ (Tos)); 25.74 (d, J(C,P) = 4.7 Hz, 2xCH$_3$); 25.83 (d, J(C,P) = 4.1 Hz, 2xCH$_3$); 27.11 (d, J(C,P) = 151.6 Hz, S-CH$_2$-P); 128.07 (2xAr-CH); 132.18 (2xAr-CH); 142.06 (Ar-C); 145.21 (Ar-C).

Diisopropyl 5'-deoxyadenosine-5'-S-methylphosphonate (4a)

Method A

5'-Bromo-5'-deoxyadenosine (3a). N-Methylimidazole (6 ml, 74.8 mmol) was added dropwise to the stirred suspension of adenosine (10.0 g, 34.4 mmol), triphenyl phosphine (19.6 g, 74.8 mmol), and carbon tetrabromide (24.8 g, 74.8 mmol) in pyridine (350 ml). The resulting mixture was stirred at room temperature for 24 h (TLC in H-3), concentrated at reduced pressure, and the product was purified by silica gel chromatography (elution with a linear gradient of 0-100% H-3 in ethyl acetate. Crystalisation from methanol afforded 5.5 g (16.7 mmol, 48 %) of the TLC- and HPLC-pure 3a. This product was used without characterization for the next reaction.
(Diisopropylphosphonomethyl)isothiouronium tosylate 2a (5.8 g, 13.5 mmol) was added to the solution (deoxygenated by argon bubbling) of sodium iso-propoxide (2.2 g, 27 mmol) in iso-propanol (120 ml) and the resulting mixture was stirred at room temperature for 30 min. 5'-Bromo-5'-deoxyadenosine (3a, 1.8 g, 5.4 mmol) was added subsequently to the mixture and the resulting suspension was stirred at room temperature overnight (TLC in H-3). Reaction mixture was concentrated at reduced pressure, the residue was adsorbed on a silica gel (50 g) from methanol solution, and the product was purified first by silica gel chromatography (elution with a gradient of 0-100% H-3 in ethyl acetate) and subsequently by RP-HPLC (elution with a gradient of 0-75% methanol in 0.1 M TEAB).

Yield: 1.5 g (3.35 mmol, 62 %); HRMS (M-H)^- for C_{17}H_{27}N_{5}O_{6}PS: calcd m/z 460.1420, obs. 460.1427; IR (KBr, cm^-1): 3333, 3206, 2980, 2932, 2361, 1644, 1600, 1577, 1475, 1421, 1386, 1375, 1239, 1103, 990, 889, 799, 536.

^1H and ^13C NMR data – see Table S1 and Table S2.

Method B

(Diisopropylphosphonomethyl)isothiouronium tosylate 2a (7.2 g, 16.9 mmol) was added to the solution (deoxygenated by argon bubbling) of sodium iso-propoxide (2.8 g, 33.8 mmol) in DMF (40 ml), and the resulting mixture was stirred at room temperature for 30 min. 6'-N-Benzoyl-5'-deoxy-2',3'-O-methoxymethylidene-5'-O-tosyl-adenosine (6^2, 6.4 g, 11.3 mmol) in DMF (10 ml) was added subsequently, and the resulting mixture was stirred at room temperature for 1 h (TLC in C-1). The reaction mixture was concentrated at reduced pressure, the residue was diluted with ethyl acetate (100 ml), and the solution was washed with water (3x 50 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated, and the crude product 8 was purified by chromatography on a silica gel column (elution with a gradient of 0-10% ethanol in chloroform).

The protected phosphonate 8 was dissolved in 50% aqueous acetic acid (50 ml), the solution was stirred at room temperature for 2 h (TLC in C-1), then concentrated at reduced pressure, and the residue was co-evaporated with 2M TEAB (10 ml) and finally with methanol. The residue was diluted with concentrated aqueous ammonia (40 ml) and stirred at room temperature overnight (TLC in C-1). The solution was then concentrated at reduced pressure, and the product was purified by chromatography on silica gel.

Yield: 3.7 g (8.1 mmol, 72%).
Diisopropyl 5'-deoxyguanosine-5'-S-methylphosphonate (4b)
Compound 4b was prepared from 3b.3 (2.0 g, 5.1 mmol) by the same procedure as compound 4a (Method A).
Yield: 1.17 g (2.45 mmol, 48%); HRMS (M-H)⁻ for C₁₇H₂₇N₅O₇PS: calcd m/z 476.1369, obs. 476.1375; IR (KBr, cm⁻¹): 3412, 3133, 2980, 2930, 2360, 1691, 1633, 1606, 1534, 1485, 1375, 1233, 1178, 1103, 993, 889, 811, 537.
¹H and ¹³C NMR data – see Table S1 and Table S2.

Diisopropyl 5'-deoxyuridine-5'-S-methylphosphonate (4c)
Compound 4c was prepared from 3c.4 (1.8 g, 4.6 mmol) by the same procedure as compound 4a (Method A, but the intermediate was purified only by chromatography on silica gel), followed by deprotection with Dowex 50 H⁺. To a solution of protected phosphonate in ethanol, Dowex 50 in H⁺ was added. Reaction mixture was stirred at 45 °C for 1h (TLC in C-1), then filtered, and the resin was washed with warm ethanol. The residue was evaporated at reduced pressure and the product was purified by HPLC (elution with a 0-100% gradient of methanol in 0.1M TEAB).
Yield: 1.3 g (2.9 mmol, 64 %); HRMS (M-H)⁻ for C₁₆H₂₆N₂O₈PS: calcd m/z 437.1148, obs. 437.1154; IR (KBr, cm⁻¹): 3430, 3064, 2981, 2934, 2360, 1697, 1635, 1465, 1459, 1387, 1377, 1233, 1103, 989, 889, 810, 538.
¹H and ¹³C NMR data – see Table S1 and Table S2.

Diisopropyl 5'-deoxycytidine-5'-S-methylphosphonate (4d)
Compound 4d was prepared from 7 (2.0 g, 3.7 mmol) by the same procedure as compound 4a (Method B).
Yield 1.2 g (2.8 mmol, 76 %); HRMS (M-H)⁻ for C₁₆H₂₈N₃O₇PS: calcd m/z 436.1308, obs. 436.1315; IR (KBr, cm⁻¹): 3428, 2980, 2360, 2342, 1647, 1525, 1490, 1376, 1236, 1102, 993, 890, 788, 539.
¹H and ¹³C NMR data – see Table S1 and Table S2.

5'-Deoxyadenosine-5'-S-methylphosphonic acid (5a)
Diisopropylester 4a (0.23 g, 0.5 mmol) was treated with bromotrimethylsilane (0.264 ml, 2.0 mmol) and 2,6-lutidine (0.74 ml, 4.0 mmol) in dry acetonitrile (5 ml) at room temperature overnight. The course of the reaction was checked by HPLC after dilution of the sample with TEAB-ethanol. Reaction mixture was concentrated under reduced pressure, the residue treated with 0.1M-TEAB for 1 h, and the crude product 5a was purified by preparative HPLC on Axia C18 column by elution with a linear gradient of methanol (0-50%) in 0.1M TEAB.

Yield: 0.12 g (0.32 mmol, 64 %); HRMS (M-H) - for C_{11}H_{15}N_{5}O_{6}PS: calcd m/z 376.0481, obs. 376.0483; IR (KBr, cm^{-1}): 3425, 2921, 2361, 2343, 1646, 1607, 1576, 1476, 1421, 13334, 1089, 1058, 972, 796, 648, 551.

1H and 13C NMR data – see Table S1 and Table S2.

5’-Deoxyguanosine-5’-S-methylphosphonic acid (5b)

Compound 5b was prepared from 4b (0.24 g, 0.5 mmol) by the same procedure as compound 5a.

Yield: 0.94 g (0.24 mmol, 48 %); HRMS (M-H) - for C_{11}H_{15}N_{5}O_{7}PS: calcd m/z 392.0430, obs. 392.0438; IR (KBr, cm^{-1}): 3425, 3148, 2908, 1695, 1632, 1534, 1482, 1357, 1179, 1056, 973, 833, 780, 553.

1H and 13C NMR data – see Table S1 and Table S2.

5’-Deoxyuridine-5’-S-methylphosphonic acid (5c)

Compound 5c was prepared from 4c (219 mg, 0.5 mmol) by the same procedure as compound 5a.

Yield: 0.15 g (0.42 mmol, 84 %); HRMS (M-H) - for C_{10}H_{14}N_{2}O_{8}PS: calcd m/z 353.0209, obs. 353.0217; IR (KBr, cm^{-1}): 3426, 2960, 2923, 2581, 1694, 1465, 1446, 1396, 1387, 1387, 1097, 1057, 972, 814, 767, 549.

1H and 13C NMR data – see Table S1 and Table S2.

5’-Deoxycytidine-5’-S-methylphosphonic acid (5d)

Compound 5d was prepared from 4d (0.22 g, 0.5 mmol) by the same procedure as compound 5a.

Yield: 0.16 g (0.45 mmol, 80 %); HRMS (M-H) - for C_{10}H_{15}N_{3}O_{7}PS: calcd m/z 352.0368, obs. 352.0373; IR (KBr, cm^{-1}): 3427, 2905, 2577, 1644, 1526, 1494, 1404, 1373, 1289, 1097, 1053, 970, 758, 599, 549.

1H and 13C NMR data – see Table S1 and Table S2.
Diisopropyl 6-N-benzoyl-2′-deoxyarabinoadenosin-2′-S-methylphosphonate (11)

Compound 11 was prepared from \(10^6\) (6.0 g, 8.1 mmol) by the same procedure as compound 8 (Method B). The obtained fully protected product was partitioned between chloroform and water. The organic layer was dried with sodium sulfate and concentrated *in vacuo*. The residue was treated with 0.5M TBAF in THF (75 ml) at r. t. for 30 minutes (TLC in C-1). The mixture was quenched by addition of water (10 ml), and the product 12 was purified by chromatography on a silica gel column by elution with a linear gradient of ethanol (0-10%) in chloroform.

Yield: 4.0 g (7.0 mmol, 87 %); HRMS (M+H\(^+\)) for \(C_{24}H_{33}N_5O_7PS\): calcd m/z 566.1838, obs. 566.1833; IR (KBr, cm\(^{-1}\)): 3403, 3306, 3007, 2986, 2935, 1708, 1612, 1586, 1456, 1377, 1353, 1332, 1297, 1240, 1102, 1080, 1000, 799, 707, 666, 539.

\(^1\)H and \(^13\)C NMR data – see Table S1 and Table S2.

5′-Deoxyadenosine-5′-S-methylphosphonyldiphosphate (13a)

2,2′-Dipyridyldisulphide (0.044 g, 0.199 mmol) was added to a solution of 5a (0.015 g, 0.040 mmol), imidazole (0.032 mg, 0.477 mmol), triphenyl phosphine (0.052 g, 0.199 mmol) and tri-n-octylamine (0.087 ml, 0.199 mmol) in DMF. The reaction mixture was stirred at room temperature for 2 h (TLC in IPAW), and then poured into the solution of NaIO\(_4\) (0.042 g) in acetone-diethyl ether-triethylamine mixture (4 ml, 12:7:1). The resulting precipitate was left aside in an ice bath for 1 h and then centrifuged. The sediment was washed once with cold precipitating solution and then twice with the cold mixture of acetone – diethyl ether – triethylamine (12:7:1), and finally it was dried over P\(_2\)O\(_5\) *in vacuo*. The obtained phosphonoimidazolide 12 was dissolved in 0.5 M -bis(tributylamonium) pyrophosphate in DMSO (0.24 ml, 0.12 mmol) and the reaction mixture was left aside at room temperature overnight (analysis performed by HPLC). The reaction mixture was diluted with 0.05 M ammonium hydrogencarbonate and the product was purified on POROS 50 HQ by elution with a linear gradient of ammonium hydrogencarbonate (0.05-0.5 M). The corresponding fractions were pooled and evaporated at reduced pressure. The residue was co-distilled twice with methanol and subsequently treated with Dowex 50 (Na\(^+\)) form. Sodium salt of 13a was obtained as a white lyophylizate. Yield: 0.011 g (0.018 mmol, 46%); HRMS (M+H\(^+\)) for \(C_{11}H_{18}N_5Na_4O_{12}P_3S\): calcd m/z 625.9244, obs. 625.9234.

\(^1\)H NMR (600 MHz; D\(_2\)O):
8.42 s (1H, H-2);
8.25 s (1H, H-8);
5.88 d (1H; J(1’,2’) = 6.0; H-1’);
4.76 dd (1H; J(4’,3’) = 3.4, J(4’,5’) = 5.4, J(4’,5’’) = 7.1; H-4’);
4.19 dd (1H; J(3’,2’) = 5.5, J(3’,4’) = 3.4; H-3’);
3.15 bdd (1H; J(5’,5’’) = 13.7, J(5’,4’) = 5.4; H-5’);
3.05 bdd (1H; J(5’’,5’’) = 13.7, J(5’’,4’’) = 7.1; H-5’’);
2.91 m (2H, P-CH2-S).
31P NMR (202.3 MHz; D2O):
11.64, -8.09 and -22.08.

5’-Deoxyguanosine-5’-S-methylphosphonyldiphosphate (13b)

Compound 13b was prepared from 5b (0.02 g, 0.034 mmol) by the same procedure as compound 8a. Yield: 0.015 g (0.024 mmol, 69 %); HRMS (M+H)+ for C11H15N5Na4O13P3S: calcd m/z 641.9193, obs. 641.9183.

1H NMR (600 MHz; D2O):
7.97 s (1H, H-2);
5.71 d (1H; J(1’,2’) = 6.2; H-1’);
4.65 dd (1H; J(2’,1’) = 6.2, J(2’,3’) = 5.5; H-2’);
4.22 ddd (1H; J(4’,3’) = 3.4, J(4’,5’) = 5.6, J(4’,5’’) = 6.9; H-4’);
4.16 dd (1H; J(3’,2’) = 5.5, J(3’,4’) = 3.4; H-3’);
3.12 bdd (1H; J(5’,5’’) = 13.7, J(5’,4’) = 5.6; H-5’);
3.02 bdd (1H; J(5’’,5’’) = 13.7, J(5’’,4’’) = 6.9; H-5’’);
2.92 m (2H, P-CH2-S).
31P NMR (202.3 MHz; D2O):

5’-Deoxyuridine-5’-S-methylphosphonyldiphosphate (13c)

Compound 13c was prepared from 5c (0.015 g, 0.042 mmol) by the same procedure as compound 8a. Yield: 0.014 g (0.023 mmol, 55%); HRMS (M+H)+ for C10H14N2Na4O14P3S: calcd m/z 602.8958, obs. 602.8964.

1H NMR (600 MHz; D2O):
7.63 d (1H; J(6,5) = 7.6; H-6);
5.85 d (1H; J(1’,2’) = 5.1; H-1’);
5.82 d (1H; J(5,6) = 7.6; H-5);
4.21 dd (1H; J(2’,1’) = 5.1, J(2’,3’) = 5.7; H-2’);
4.07 ddd (1H; J(4’,3’) = 5.1, J(4’,5’) = 4.8, J(4’,5’’) = 7.3; H-4’);

4.02 dd (1H; \(J(3',2') = 5.7, J(3',4') = 5.1; \ H-3')

3.14 ddd (1H; \(J(5',5'') = 13.8, J(5',4') = 4.8, J(5',P) = 0.8; \ H-5')

3.00 bdd (1H; \(J(5'',5') = 13.8, J(5'',4') = 7.3, J(5'',P) = 0.8; \ H-5'')

2.93 d (2H; \(J(CH_2,P) = 14.0; \ P-CH_2-S\)).

\(^{31}\text{P} \text{NMR (202.3 MHz; D}_2\text{O):}

11.72, -8.58 and -22.06.

\(5'-\text{Deoxycytidine-5'}-5'-\text{methylphosphonyldiphosphate (13d)}\)

Compound 13d was prepared from 5d (0.02 g, 0.056 mmol) by the same procedure as compound 8a. Yield: 0.024g (0.04mmol, 72%); HRMS (M+H)\(^+\) for C\(_{10}\)H\(_{15}\)N\(_3\)Na\(_4\)O\(_{13}\)P\(_3\)S: calcd m/z 601.9131, obs. 601.9124.

\(^1\text{H NMR (600 MHz; D}_2\text{O):}

7.76 d (1H, \(J(6,5) = 7.6; \ H-6)\)

6.08 d (1H, \(J(5,6) = 7.6; \ H-5)\)

5.84 d (1H, \(J(1',2') = 4.7; \ H-1')\)

4.21 dd (1H, \(J(2',1') = 4.7, J(2',3') = 5.6; \ H-2')\)

4.12 ddd (1H, \(J(4',3') = 5.1, J(4',5') = 4.6, J(4',5'') = 7.3; \ H-4')\)

4.04 dd (1H, \(J(3',2') = 5.6, J(3',4') = 5.1; \ H-3')\)

3.15 bdd (1H, \(J(5',5'') = 13.8, J(5',4') = 4.6; \ H-5')\)

3.03 bdd (1H, \(J(5'',5') = 13.8, J(5'',4') = 7.3; \ H-5'')

2.94 d (2H, \(J(CH_2,P) = 14.0; \ P-CH_2-S\)).

\(^{31}\text{P} \text{NMR (202.3 MHz; D}_2\text{O):}

11.82, -9.00 and -22.12.
Table 1. Proton NMR data of compounds 4a-4d, 5a-5d and 11

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solvent</th>
<th>H-1'</th>
<th>H-2'</th>
<th>H-3'</th>
<th>H-4'</th>
<th>H-5'a</th>
<th>H-5'b</th>
<th>Base</th>
<th>S-CH₂-P(OR)₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>DMSO</td>
<td>5.88 d (6.0)</td>
<td>4.72 m (6.0, 5.6, 5.2)</td>
<td>4.15 td (5.2, 5.2, 4.0)</td>
<td>4.06 ddd (7.1, 5.5, 4.0)</td>
<td>3.05 ddd (13.9, 5.5, 1.1)</td>
<td>3.02 ddd (13.9, 7.1, 1.0)</td>
<td>8.34 s (H-8)</td>
<td>8.15 s (H-2)</td>
</tr>
<tr>
<td>4b</td>
<td>DMSO</td>
<td>5.68 d (6.0)</td>
<td>4.56 m (6.1, 6.0, 4.8)</td>
<td>4.05 td (4.8, 4.8, 3.6)</td>
<td>4.00 ddd (7.0, 5.7, 3.6)</td>
<td>3.06 ddd (13.8, 5.7, 1.1)</td>
<td>2.98 ddd (13.8, 7.0, 0.8)</td>
<td>7.89 s (H-8)</td>
<td>10.67 bs (NH)</td>
</tr>
<tr>
<td>4c</td>
<td>DMSO</td>
<td>5.75 d (5.5)</td>
<td>4.09 t (5.5, 5.4)</td>
<td>3.87 dd (5.4, 4.4)</td>
<td>3.95 ddd (6.8, 5.4, 4.4)</td>
<td>3.00 ddd (13.9, 5.4, 1.0)</td>
<td>2.97 ddd (13.9, 6.8, 1.0)</td>
<td>7.65 d, J=8.1 (H-6); 5.64 d, J=8.1 (H-5)</td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td>DMSO</td>
<td>5.78 d (4.4)</td>
<td>3.97 td (5.3, 5.5, 5.4)</td>
<td>3.82 q (5.9, 5.5, 5.4)</td>
<td>3.93 q (5.4, 3x)</td>
<td>2.99 m</td>
<td>2.99 m</td>
<td>7.58 d, J=7.4 (H-6); 5.73 d, J=7.4 (H-5)</td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>D₂O</td>
<td>6.07 d (5.7)</td>
<td>4.82 t (5.7, 5.5)</td>
<td>4.45 dd (5.5, 4.2)</td>
<td>4.36dd (6.3, 5.9, 4.2)</td>
<td>3.07 ddd (14.0, 5.9, 1.0)</td>
<td>2.99 bdd (14.0, 6.3, 1.1)</td>
<td>8.21 s (H-2); 8.40 s (H-8)</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>D₂O</td>
<td>5.89 d (5.9)</td>
<td>4.82 dd (5.9, 5.4)</td>
<td>4.43 dd (5.4, 4.0)</td>
<td>4.31 ddd (6.6, 6.0, 4.0)</td>
<td>3.04 ddd (13.9, 6.0, 0.8)</td>
<td>2.98 bdd (13.9, 6.6, 1.1)</td>
<td>8.01 s (H-8)</td>
<td></td>
</tr>
<tr>
<td>5c</td>
<td>D₂O</td>
<td>5.89 d (4.9)</td>
<td>4.27 t (5.2, 4.9)</td>
<td>4.12 m</td>
<td>4.12 m</td>
<td>3.02 m</td>
<td>2.92 m</td>
<td>7.62 d, J=7.6 (H-6); 5.82 d, J=7.6 (H-5)</td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td>D₂O</td>
<td>5.91 d (4.3)</td>
<td>4.33 dd (5.3, 4.3)</td>
<td>4.21 dd (5.9, 5.3)</td>
<td>4.25 ddd (6.4, 5.9, 4.9)</td>
<td>3.08 ddd (14.1, 4.9, 0.7)</td>
<td>2.98 ddd (14.1, 6.4, 0.7)</td>
<td>7.78 d, J=7.6 (H-6); 6.07 d, J=7.6 (H-5)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DMSO</td>
<td>6.65 d (7.2)</td>
<td>4.12 dd (10.0, 7.2)</td>
<td>4.40 ddd (10.0, 8.2, 5.8)</td>
<td>3.82 ddd (8.2, 4.2, 2.3)</td>
<td>3.77 ddd (12.3, 5.2, 2.3)</td>
<td>3.69 ddd (12.3, 4.2, 5.2)</td>
<td>8.74 s (H-2); 8.67 s (H-8)</td>
<td></td>
</tr>
</tbody>
</table>

Additional signals: ⁴ 7.31 b (NH₃); 5.52 d, J=6.0 Hz (2-OH); 5.33 d, J=5.2 Hz (3-OH); ⁵ 6.51 bs (NH₂); 5.50 d, J=6.1 Hz (2-OH); 5.28 d, J=4.8 Hz (3-OH); ⁶ 11.36 bs (NH); 5.46 bs (2-OH); 5.27 bs (3-OH); ⁷ 7.23 b and 7.15 b (NH₃); 5.26 d, J=5.5 Hz (2-OH); 5.16 d, J=5.9 Hz (3-OH); ⁸ 11.22 bs (NH); 8.04 m, 2H, 7.65 m, 1H and 7.55 m, 2H (C₆H₅); 5.97 d, J=6.0 Hz (3-OH); 5.20 t, J=5.2 Hz (3-OH).
Table 2. Carbon-13 NMR data of compounds 4a-4d, 5a-5d and 11

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solvent</th>
<th>C-1’</th>
<th>C-2’</th>
<th>C-3’</th>
<th>C-4’</th>
<th>C-5’</th>
<th>Base</th>
<th>P(OR)₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>DMSO</td>
<td>87.71</td>
<td>72.83</td>
<td>72.82</td>
<td>84.10</td>
<td>35.24</td>
<td>(3.7)</td>
<td>152.90(C-2); 149.62(C-4); 119.38(C-5); 156.30(C-6); 140.03(C-8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70.44 d, J=3.4 and 70.39 d, J=3.4 (2x O-CH=); 25.54 d, J=146.9(P-CH₂-S); 24.02 d, J=3.4 and 23.86 d, J=4.8 (4x CH₃)</td>
</tr>
<tr>
<td>4b</td>
<td>DMSO</td>
<td>86.86</td>
<td>72.80</td>
<td>72.76</td>
<td>83.97</td>
<td>35.22</td>
<td>(3.7)</td>
<td>153.89(C-2); 151.58(C-4); 117.06(C-5); 156.98(C-6); 136.09(C-8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70.53 d, J=6.6 and 70.49 d, J=6.5 (2x O-CH=); 25.57 d, J=146.8(P-CH₂-S); 24.04 d, J=3.6 and 23.89 d, J=3.7 (4x CH₃)</td>
</tr>
<tr>
<td>4c</td>
<td>DMSO</td>
<td>88.58</td>
<td>72.54</td>
<td>72.40</td>
<td>83.34</td>
<td>35.00</td>
<td>(3.7)</td>
<td>150.93(C-2); 163.27(C-4); 102.34(C-5); 141.25(C-6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70.54 d, J=6.8 and 70.49 d, J=6.7 (2x O-CH=); 25.57 d, J=147.0(P-CH₂-S); 24.06 d, J=3.6 and 23.92 d, J=3.6 (4x CH₃)</td>
</tr>
<tr>
<td>4d</td>
<td>DMSO</td>
<td>89.85</td>
<td>73.35</td>
<td>72.56</td>
<td>82.89</td>
<td>35.02</td>
<td>(3.5)</td>
<td>155.46(C-2); 165.76(C-4); 94.55(C-5); 141.66(C-6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70.51 d, J=6.8 and 70.46 d, J=6.8 (2x O-CH=); 25.64 d, J=146.9(P-CH₂-S); 24.06 d, J=3.5 and 23.93 d, J=4.8 (4x CH₃)</td>
</tr>
<tr>
<td>5a</td>
<td>D₂O</td>
<td>89.81</td>
<td>76.20</td>
<td>74.89</td>
<td>86.28</td>
<td>36.58</td>
<td>(7.4)</td>
<td>155.59(C-2); 151.67(C-4); 121.49(C-5); 158.32(C-6); 142.78(C-8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.82 d, J=128.9 (P-CH₂-S)</td>
</tr>
<tr>
<td>5b</td>
<td>D₂O</td>
<td>89.72</td>
<td>75.76</td>
<td>75.03</td>
<td>86.24</td>
<td>38.56</td>
<td>(7.4)</td>
<td>157.63(C-2); 154.46(C-4); 119.37(C-5); 163.40(C-6); 140.26(C-8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.64 d, J=128.8 (P-CH₂-S)</td>
</tr>
<tr>
<td>5c</td>
<td>D₂O</td>
<td>92.63</td>
<td>76.88</td>
<td>75.52</td>
<td>85.28</td>
<td>38.94</td>
<td>(7.7)</td>
<td>162.51(C-2 + C-4); 105.68(C-5); 143.34(C-6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.93 d, J=128.5 (P-CH₂-S)</td>
</tr>
<tr>
<td>5d</td>
<td>D₂O</td>
<td>92.79</td>
<td>76.54</td>
<td>74.54</td>
<td>85.05</td>
<td>38.31</td>
<td>(7.2)</td>
<td>160.39(C-2); 168.94(C-4); 99.22(C-5); 144.38(C-6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32.73 d, J=130.0 (P-CH₂-S)</td>
</tr>
<tr>
<td>11</td>
<td>DMSO</td>
<td>84.03</td>
<td>55.11</td>
<td>72.74</td>
<td>85.13</td>
<td>59.92</td>
<td></td>
<td>151.82(C-2); 152.28(C-4); 125.24(C-5); 150.58(C-6); 143.35(C-8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70.83 d, J=6.6 and 70.79 d, J=6.7 (2x O-CH=); 25.45 d, J=146.0(P-CH₂-S); 23.97 d, J=3.5, 23.93 d, J=4.7, 23.69 d, J=4.9 (4x CH₃)</td>
</tr>
</tbody>
</table>

Additional signals: * 165.77 (C=O); 133.59; 128.72(2), 128.72(2) and 132.71 (C₆H₅).
1H-NMR; in D2O; ref=dioxane=3.75 ppm

13C-NMR; in D2O; ref=dioxane=69.3 ppm
1H-NMR; in d6DMSO; ref=DMSO=2.50 ppm

13C-APT-NMR; in d6DMSO; ref=d6DMSO=39.7 ppm
1H-NMR; in d6DMSO; ref=DMSO=2.50 ppm

13C-APT-NMR; in d6DMSO; ref=d6DMSO=39.7 ppm
1H-NMR; in d6DMSO; ref=DMSO=2.50 ppm

$4c$

13C-APT-NMR; in d6DMSO; ref=d6DMSO=39.7 ppm

$4c$
1H-NMR; in d6DMSO; ref=DMSO=2.50 ppm

13C-APT-NMR; in d6DMSO; ref=d6DMSO=39.7 ppm
1H-NMR; in D2O; ref=dioxane=3.75 ppm

13C-NMR-APT; in D2O; ref=dioxane=69.3 ppm
1H-NMR; in D2O; ref=dioxane=3.75 ppm

13C-NMR-APT; in D2O; ref=dioxane=69.3 ppm
1H-NMR; in D2O; ref=dioxane=3.75 ppm

* = (CH3-CH2-CH2-CH2)3N

13C-NMR-APY; in D2O; ref=dioxane=69.3 ppm

* = (CH3-CH2-CH2-CH2)3N
1H-NMR in D2O; ref=dioxane=3.75 ppm

13C-APT-NMR; in D2O; ref=dioxane=69.3 ppm
1H-NMR; in d6DMSO; ref=DMso=2.50 ppm

13C-APT-NMR; in d6DMSO; ref=d6DMSO=39.7 ppm
1H-NMR in D2O; ref=dioxane=3.75 ppm

31P NMR; 1H-dec; in D2O
1H-NMR in D2O; ref=dioxane=3.75 ppm

31P NMR; 1H-dec; in D2O
1H-NMR in D2O; ref=dioxane=3.75 ppm

31P NMR; 1H-dec; in D2O
1H-NMR in D2O; ref=dioxane=3.75 ppm

31P NMR; 1H-dec; in D2O

Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2011
References