Supporting Information

Straightforward preparation of biologically active 1-aryl- and 1-heteroarylpropan-2-amines in enantioenriched form

María Rodríguez-Mata, a Vicente Gotor-Fernández, a Javier González-Sabín, b Francisca Rebolledo, a and Vicente Gotor a

a Departamento de Química Orgánica e Inorgánica, and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain.

Table of Contents

1. General procedures S1
2. Synthetic procedures and spectroscopical data for novel compounds S2
 2.1. 1-(Triphenylmethyl)-1H-imidazole-4-carbaldehyde 1e S2
 2.2. Full characterization of racemic 1-(hetero)arylpropan-2-amines 3a–e S2
 2.3. Full characterization of optically active amines (±)-3a-e S4
 2.4. Full characterization of optically active amides 5a-e S6

1. General procedures

Lipase B from Candida antarctica (CAL-B, available immobilized on polyacrylamide as Novozyme 435, 7300 PLU/g), and immobilized Lipozyme® RM (<15% in weight) were generously given by Novozymes. Pseudomonas cepacia lipase “Amano IM” (943 u/g) was a gift from Amano Enzymes Inc. Amano Lipase AK from Pseudomonas fluorescens (22100 u/g) was provided by Aldrich, and lipase from pancreas porcine (30-90 u/mg protein using triacetin) was supplied by Sigma. For the enzymatic reactions, ethyl methoxyacetate (stored with 4 Å molecular sieves) and anhydrous THF were used. Thin-layer chromatography was performed on precoated TLC plates of Merck silica gel 60F254, using a potassium permanganate solution as developing reagent. Merck silica gel 60 (particle size, 40 - 63 µm) was used for column chromatography. Optical rotations were measured at the sodium D line at 20 °C, the [α] values being given in 10−1 deg cm2 g−1. Mass spectra (m/z) were recorded in ElectronSpray Ionisation (ESI+). 1H NMR and proton-decoupled 13C NMR spectra (CDCl3 solutions) were recorded using AV-300, AC-300 or DPX-300 (1H, 300.13 MHz and 13C, 75.5 MHz) spectrometers using the δ scale (ppm) for chemical shifts. Calibration was
made on the CDCl₃ (¹³C, 76.95 ppm) or the residual CHCl₃ (¹H, 7.26 ppm), and J values are given in Hz.

2. Synthetic procedures and spectroscopical data for novel compounds

2.1. 1-(Triphenylmethyl)-1H-imidazole-4-carbaldehyde 1e
To a solution of 1H-imidazole-4-carbaldehyde (400 mg, 4.16 mmol) in anhydrous dichloromethane (21 cm³), triethylamine (0.636 cm³, 4.58 mmol) was added under nitrogen atmosphere, and the resulting solution cooled at 0 °C. Then, triphenylmethyl chloride (1.28 g, 4.58 mmol) was added. The reaction mixture was stirred at room temperature for 1.5 h until complete consumption of the starting material (analysis by TLC, methanol/dichloromethane 1:9 as eluent). The solvent was evaporated and the crude material purified by flash chromatography (ethyl acetate/hexane 1:1) to yield the trityl derivative 1e (1.38 g, 98%) as a white solid. Mp: 193-196 °C (lit.,¹ 193-196 °C).

2.2. Full characterization of racemic 1-(hetero)arylpropan-2-amines 3a-e

(±)-1-(1-Naphthyl)propan-2-amine 3a

![Chemical structure of 1-(1-Naphthyl)propan-2-amine 3a]

Yield, 74%; yellow oil; δH(300 MHz, CDCl₃) 1.21 (3 H, d, J 6.4, CH₃), 1.67 (2 H, br s, NH₂), 2.96 (1 H, dd, J 13.4 and 8.0, CHH), 3.22 (1 H, dd, J 13.4 and 5.2, CHH), 3.32-3.44 (1 H, m, CH), 3.46 (1 H, dd, J 13.4 and 5.2, CH), 3.74-3.85 (4 H, m), 7.75 (1 H, d, J 7.8), 7.86 (1 H, dd, J 7.2 and 3.0), 8.05 (1 H, d, J 8.2); δC(75.5 MHz, CDCl₃) 23.7 (CH₃), 43.5 (CH₂), 47.6 (N-CH), 123.8 (CH), 125.3 (CH), 125.4 (CH), 125.7 (CH), 127.0 (CH), 127.2 (CH), 128.7 (CH), 132.0 (C), 133.9 (C), 135.7 (C); HRMS (ESI+) calcd. for C₁₃H₁₆N ([M+H]⁺): 186.1277; found: 186.1272.

(±)-1-(2-Naphthyl)propan-2-amine 3b

Yield, 72%; pale yellow oil; δ_{H}(300 MHz, CDCl$_3$) 1.17 (3 H, d, J 6.0, CH$_3$), 1.61 (2 H, br s, NH$_2$), 2.68 (1 H, dd, J 13.2 and 8.0, CHH), 2.88 (1 H, dd, J 13.2 and 5.4, CHH), 3.27 (1 H, m, N-CH), 7.33 (1 H, d, J 7.8, H-3), 7.42-7.50 (2 H, m), 7.64 (1 H, s), 7.78-7.84 (3 H, m); δ_{C}(75.5 MHz, CDCl$_3$) 23.4 (CH$_3$), 46.6 (CH$_2$), 48.2 (CH), 125.2 (CH), 125.8 (CH), 127.3 (CH), 127.5 (CH), 127.6 (CH), 127.9 (CH), 132.0 (C), 133.4 (C), 137.1 (C); HRMS (ESI+) calcd. for C$_{13}$H$_{15}$N ([M+H]$^+$): 186.1277; found: 186.1279.

(±)-1-(1H-Indol-3-yl)propan-2-amine 3c

Yield, 68%; mp 86-90 ºC; δ_{H}(300 MHz, CDCl$_3$) 1.22 (3 H, d, J 6.4, CH$_3$), 1.52 (2 H, br s, NH$_2$), 2.69 (1 H, ddd, J 14.3, 8.3 and 0.7, CHH), 2.93 (1 H, ddd, J 14.3, 5.0 and 1.0, CHH), 3.29-3.38 (1 H, m, N-CH), 6.98 (1 H, br d, J 1.0, H-2), 7.13-7.25 (2 H, m, H-5 and H-6), 7.35 (1 H, ddd, J 7.9, 1.3 and 0.9, H-7), 7.66 (1 H, m, H-4), 8.91 (1 H, br s, NH); δ_{C}(75.5 MHz, CDCl$_3$) 23.6 (CH$_3$), 35.8 (CH$_2$), 47.2 (N-CH), 111.1 (CH), 113.3 (C-3), 118.8 (CH), 119.0 (CH), 121.7 (CH), 122.5 (CH), 127.6 (C-3a), 136.3 (C-7a); HRMS (ESI+) calcd. for C$_{11}$H$_{15}$N$_2$ [(M+H)$^+$]: 175.1230; found: 175.1230.

(±)-1-(3-Pyridyl)propan-2-amine 3d

Yield, 33%; pale yellow oil; δ_{H}(300 MHz, CDCl$_3$) 1.06 (3 H, d, J 6.4, CH$_3$), 2.4 (2 H, br s, NH$_2$), 2.51 (1 H, dd, J 13.5 and 7.7, CHH), 2.62 (1 H, dd, J 13.5 and 5.7, CHH), 3.12 (1 H, sex, J 6.2, N-CH), 7.14-7.18 (1 H, m, H-5), 7.45 (1 H, d, J 7.9, H-4), 8.38-8.40 (2 H, m, H-2 and H-6); δ_{C}(75.5 MHz, CDCl$_3$) 23.0 (CH$_3$), 43.1 (CH$_2$), 48.0 (N-CH), 123.1 (C-5), 134.6 (C-3), 136.5 (C-4), 147.5 (C-2 or C-6), 150.3 (C-6 or C-2); HRMS (ESI+) calcd. for C$_8$H$_{13}$N$_2$ [(M+H)$^+$]: 137.1073; found: 137.1068.
(±)-1-[1-(Triphenylmethyl)-1H-imidazol-4-yl]propan-2-amine 3e

Yield, 44%; pale yellow semi-solid; δ(300 MHz, CDCl₃) 1.07 (3 H, d, J 6.3, CH₃), 2.47 (1 H, dd, J 14.3 and 7.7, CHH), 2.61 (1 H, dd, J 14.3 and 5.5, CHH), 3.12 (2 H, br s, NH₂), 3.24 (1 H, sex, J 6.4, N-CH), 6.56 (1 H, m, H-5), 7.09-7.33 (16 H, m); δ(75.5 MHz, CDCl₃) 22.0 (CH₃), 37.5 (CH₂), 47.0 (N-CH), 75.0 [C(Ph)₃], 119.1 (C-5), 127.9 (9 x CH, Ph), 129.6 (6 x CH, Ph), 138.5 (C-2), 138.8 (C-4), 142.4 (3 x C, Ph); HRMS (ESI+) calcd. for C₂₅H₂₆N₃ [(M+H)⁺]: 368.2121; found: 368.2117; calcd. for C₂₅H₂₅N₃Na [(M+Na)⁺]: 390.1941; found: 390.1942.

2.3. Full characterization of optically active amines 3a-e

(S)-1-(1-Naphthyl)propan-2-amine 3a
Yield: 81%; [α]D²⁰ +57.9 (c 1 in CHCl₃), ee = 87%. HPLC conditions for its acetamide derivative: Chiralcel OJ-H, n-hexane/propan-2-ol 95:5, 0.8 cm³/min, 40 °C, UV 210 nm, tᵣ = 22.4 (R) and 24.3 (S) min; Rs = 1.4.

(S)-1-(2-Naphthyl)propan-2-amine 3b
Yield: 96%; [α]D²⁰ +21.6 (c 0.8 in CHCl₃), ee = 91%. HPLC conditions for its acetamide derivative: Chiralcel OJ-H, n-hexane/ propan-2-ol 90:10, 0.8 cm³/min, 20 °C, UV 210 nm, tᵣ = 18.5 (S) and 20.4 (R) min; Rs = 1.9.
(S)-1-(1H-Indol-3-y1)propan-2-amine 3c
Yield: 81%; $[\alpha]_D^{20} +20.8$ (c 1 in MeOH), $ee = 99\%$. HPLC conditions for its acetamide derivative: Chiralcel OJ-H, n-hexane/ethanol 85:15, 0.8 cm3/min, 40 °C, UV 210 nm, $t_R = 13.9$ (R) and 16.2 (S) min; Rs = 2.9.

Acetamide obtained from (±)-3c

Acetamide with $ee = 99\%$

(S)-1-(3-Pyridyl)propan-2-amine 3d
Yield: 36%; $[\alpha]_D^{20} +8.0$ (c 0.25 in CHCl$_3$), $ee = 98\%$. HPLC conditions for its acetamide derivative: Chiralcel OJ-H, n-hexane/ethanol 97:3, 0.8 cm3/min, 40 °C, UV 210 nm, $t_R = 22.2$ (R) and 24.2 (S) min; Rs = 2.0.

Acetamide obtained from (±)-3d

Acetamide with $ee = 98\%$

(S)-1-[1-(Triphenylmethyl)-1H-imidazol-4-yl]propan-2-amine 3e
Yield: 71%; $[\alpha]_D^{20} +6.3$ (c 1 in CHCl$_3$), $ee = 97\%$. HPLC conditions for its acetamide derivative: Chiralcel OJ-H, n-hexane/ethanol 95:5, 0.8 cm3/min, 40 °C, UV 210 nm, $t_R = 6.9$ (S) and 8.8 (R) min; Rs = 3.1.

Acetamide obtained from (±)-3e

Acetamide with $ee = 97\%$
2.4. Full characterization of optically active amides 5a-e

(R)-N-[1-(1-Naphthyl)propan-2-yl]-2-methoxyacetamide 5a

Yield, 99%; mp 73-76 °C; \([\alpha]_D^{20} -30.7\) (c 1 in CHCl₃), \(ee = 99\%\); \(\delta_H(300 MHz, CDCl₃) 1.17 (3 H, d, J 6.6, CH₃), 2.99 (1 H, dd, J 8.3 and 13.6, CHH-Ar), 3.33 (3 H, s, O-CH₃), 3.54 (1 H, dd, J 5.5 and 13.6, CHH-Ar), AB system \(|\delta_A = 3.83, \delta_B = 3.89, |^2J_{AB}| = 15.1, \ O-CH₂\), 4.44 (1 H, m, CH), 6.50 (1 H, br d, J 7.0, NH-CO), 7.27-7.60 (4 H, m), 7.75 (1 H, d, J 8.1), 7.85 (1 H, d, J 7.9) and 8.31 (1 H, d, J 8.6); \(\delta_C(75.5 MHz, CDCl₃) 19.9 (CH₃), 39.9 (Ar-CH₂), 45.4 (N-CH), 58.9 (O-CH₃), 71.8 (O-CH₂), 124.1 (CH), 125.1 (CH), 125.5 (CH), 126.0 (CH), 127.2 (CH), 127.4 (CH), 128.5 (CH), 132.2 (C), 133.8 (C), 134.2 (C) and 169.0 (C=O); HRMS (ESI+) \(m/z\) calcd for \(C_{16}H_{19}NNaO₂ (\text{M+Na}^+): 280.1308 \); found: 280.1319; \(m/z\) calcd for \(C_{16}H_{20}NO₂ (\text{M+H}^+): 258.1489 \); found: 258.1478; HPLC conditions: Chiralcel OJ-H, n-hexane/propan-2-ol 95:5, 0.8 cm\(^3\)/min, 40 °C, UV 210 nm, \(t_R = 19.2\) (R) and 23.7 (S) min; \(R_s = 5.3\).

<table>
<thead>
<tr>
<th>Methoxyacetamide (±)-5a</th>
<th>Methoxyacetamide with (ee = 99%)</th>
</tr>
</thead>
</table>

(R)-N-[1-(2-Naphthyl)propan-2-yl]-2-methoxyacetamide 5b

Yield, 99%; pale yellow semi-solid; \([\alpha]_D^{20} +18.0\) (c 1 in CHCl₃), \(ee = 99\%\); \(\delta_H(300 MHz, CDCl₃) 1.17 (3 H, d, J 6.6, CH₃), 2.87 (1 H, dd, J 7.3 and 13.5, CHH-Ar), 3.03 (1 H, dd, J 6.1 and 13.5, CHH-Ar), 3.31 (3 H, s, O-CH₃), AB system \(|\delta_A = 3.80, \delta_B = 3.86, |^2J_{AB}| = 15.1, \ O-CH₂\), 4.40 (1 H, m, CH), 6.46 (1 H, br d, J 7.7, NH-CO), 7.34 (1 H, d, J 8.4, H-3), 7.37-7.52 (2 H, m), 7.63 (1 H, s, H-1), 7.70-7.90 (3H, m); \(\delta_C(75.5 MHz, CDCl₃) 19.9 (CH₃), 42.6 (Ar-CH₂), 45.5 (N-CH), 59.0 (O-CH₃), 71.8 (O-CH₂), 125.3 (CH), 125.9 (CH), 127.4 (CH), 127.5 (CH), 127.66 (CH), 127.70 (CH), 127.9 (CH), 132.1 (C), 133.4 (C), 135.4 (C) and 168.7 (C=O); HRMS (ESI+) \(m/z\) calcd for
C_{16}H_{19}NNaO_{2} ([M+Na]^{+}): 280.1308; found: 280.1314; m/z calcld for C_{16}H_{20}NO_{2} ([M+H]^{+}): 258.1489; found: 258.1477; HPLC conditions: Chiralcel OJ-H, n-hexane/propan-2-ol 90:10, 0.8 cm^3/min, 20 °C, UV 210 nm, t_R = 22.7 (S) and 32.5 (R) min; Rs = 7.1.

\[
\text{Methoxyacetamide (±)-5b}
\]
\[
\text{Methoxyacetamide with ee = 98%}
\]

\[
(R)-N-[1-(1H-Indol-3-y)propan-2-yl]-2-methoxyacetamide 5c
\]

Yield, 76%; brown oil; [\alpha]_D^{20} +17.6 (c 1 in CHCl_3), ee = 95%; \delta_H(300 MHz, CDCl_3) 1.20 (3 H, d, J 6.6, CH_3), part AB of an ABX system (\delta_A = 2.91, \delta_B = 3.00, |^{2}J_{A,B}| = 14.5, ^{3}J_{A,X} = 6.9, ^{3}J_{B,X} = 5.7,

CHH-CH), 3.29 (3H, s, O-CH_3), MN system (\delta_M = 3.82, \delta_N = 3.87, |^{2}J_{M,N}| = 15.0, O-CH_2), 4.41 (1 H, m, CH), 6.52 (1 H, br d, J 7.7, NH-CO), 7.00 (1 H, d, J 2.4, H-2), 7.11 [1 H, dt, J 1.1 (d) and 7.9 (t), H-5 or H-6], 7.18 [1 H, dt, J 1.3 (d) and 7.9 (t), H-6 or H-5], 7.35 (1 H, br d, J 7.9, H-7), 7.65 (1 H, br d, J 7.9, H-4) and 8.49 (1 H, br s, NH of indol); \delta_C(75.5 MHz, CDCl_3) 20.3 (CH_3), 31.9 (Ar-CH_2), 45.2 (N-CH), 58.9 (O-CH_3), 71.9 (O-CH_2), 111.0 (CH), 111.7 (C-3), 118.8 (CH), 119.2 (CH), 121.8 (CH), 122.6 (CH), 127.8 (C-3a), 136.2 (C-7a) and 168.8 (C=O); HRMS (ESI+) calcld. for C_{14}H_{19}N_2O_2 ([M+H]^{+}): 247.1441; found: 247.1442; calcld. for C_{14}H_{18}N_2NaO_2 ([M+Na]^{+}): 269.1260; found: 269.1272; HPLC conditions: Chiralcel OJ-H, n-hexane/ethanol 85:15, 0.8 cm^3/min, 40 °C, UV 210 nm, t_R = 17.9 (R) and 21.2 (S) min; Rs = 3.3.

\[
\text{Methoxyacetamide (±)-5c}
\]
\[
\text{Methoxyacetamide with ee = 95%}
\]
(R)-N-[1-(3-Pyridyl)propan-2-yl]-2-methoxyacetamide 5d

Yield, 96%; brown oil; $[^{19}D]_{D}^{20} +14.1$ (c 1 in CHCl$_3$), ee = 85%; δ_H(300 MHz, CDCl$_3$) 1.13 (3 H, d, J 6.6, CH$_3$), part AB of an ABX system ($\delta_A = 2.73$, $\delta_B = 2.82$, $|2J_{AB}| = 13.7$, $|3J_{AX}| = 7.0$, $|3J_{BX}| = 6.3$, $CHH\text{-CH}$), 3.33 (3H, s, O-CH$_3$), MN system ($\delta_M = 3.77$, $\delta_N = 3.81$, $|2J_{MN}| = 15.1$, O-CH$_2$), 4.26 (1 H, m, CH), 6.38 (1 H, br d, J 6.8, NH-CO), 7.21 (1 H, dd, J 4.6 and 7.7, H-5), 7.52 (1 H, d, J 7.7, H-4) and 8.43 (2 H, br s, H -2 and H-6);
δ_C(75.5 MHz, CDCl$_3$) 19.8 (CH$_3$), 39.6 (Ar-CH$_2$), 45.2 (N-CH), 59.0 (O-CH$_3$), 71.7 (O-CH$_2$), 123.3 (C-5), 133.4 (C-3), 136.7 (C-4), 147.7 (C-6 or C-2), 150.2 (C-2 or C-6) and 168.7 (C=O); HRMS (ESI+) m/z calcld for C$_{11}$H$_{16}$N$_2$O$_2$ ([M+Na]$^+$): 231.1104; found: 231.1103.

HPLC conditions: Chiralcel OJ-H, n-hexane/ethanol 97:3, 0.8 cm3/min, 40 ºC, UV 210 nm, t_R = 25.6 (R) and 28.4 (S) min; Rs = 2.2.

<table>
<thead>
<tr>
<th>Methoxyacetamide (±)-5d</th>
<th>Methoxyacetamide with ee = 85%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(R)-N-[1-(1-Triphenylmethyl-1H-imidazol-4-yl)propan-2-yl]-2-methoxyacetamide 5e

Yield, 83%; mp 149-153 ºC; $[^{19}D]_{D}^{20} +15.0$ (c 1 in CHCl$_3$), ee = 96%; δ_H(300 MHz, CDCl$_3$) 1.12 (3 H, d, J 6.6, CH$_3$), part AB of an ABX system ($\delta_A = 2.78$, $\delta_B = 2.66$, $|2J_{AB}| = 14.6$, $|3J_{AX}| = 5.9$, $|3J_{BX}| = 5.2$, $CHH\text{-CH}$), 3.36 (3H, s, O-CH$_3$), MN system ($\delta_M = 3.78$, $\delta_N = 3.85$, $|2J_{MN}| = 15.0$, O-CH$_2$), 4.29 (1 H, m, CH), 6.62 (1 H, s, H-5), 7.00-7.50 (17 H, m); δ_C(75.5 MHz, CDCl$_3$) 20.0 (CH$_3$), 34.0 (Ar-CH$_2$), 44.4 (N-CH), 59.1 (O-CH$_3$), 72.1 (O-CH$_2$), 75.2 [C(Ph)$_3$], 119.4 (C-5), 128.0 (9 x CH, Ph), 129.6 (6 x CH, Ph), 137.5 (C-4), 138.3 (C-2), 142.3 (3 x C, Ph) and 168.6 (C=O); HRMS (ESI+) m/z calcld. for C$_{28}$H$_{30}$N$_3$O$_2$ ([M+H]$^+$): 440.2333; found: 440.2332; calcd. for C$_{28}$H$_{29}$N$_3$NaO$_2$ ([M+Na]$^+$): 462.2152; found: 462.2154; HPLC conditions: Chiralcel OJ-H, n-hexane/ethanol 95:5, 0.8 cm3/min, 40 ºC, UV 210 nm, t_R = 9.4 (S) and 14.0 (R) min; Rs = 3.4.

S8
Methoxyacetamide (±)-5e

Methoxyacetamide with ee = 96%

Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2011