Supporting Information

Synthesis and Biological Activity of 2-Aminoimidazole Triazoles Accessed by Suzuki-Miyaura Cross-Coupling

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 6</td>
<td>S2</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 2</td>
<td>S3</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8a</td>
<td>S4</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8b</td>
<td>S5</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8c</td>
<td>S6</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8d</td>
<td>S7</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8e</td>
<td>S8</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8f</td>
<td>S9</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8g</td>
<td>S10</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8h</td>
<td>S11</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8i</td>
<td>S12</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8j</td>
<td>S13</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8k</td>
<td>S14</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8l</td>
<td>S15</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8m</td>
<td>S16</td>
</tr>
<tr>
<td>(^1)H and (^{13})C NMR of Compound 8n</td>
<td>S17</td>
</tr>
<tr>
<td>Biofilm Inhibition Dose-response Curves vs MRSA for Compounds 8g, 8i and 8j</td>
<td>S18</td>
</tr>
<tr>
<td>Biofilm Dispersion Dose-response Curves vs A. baumannii for Compounds 8g, 8h, 8i and 8j</td>
<td>S19</td>
</tr>
<tr>
<td>Growth Curve Plots for Compounds 8g, 8i and 8j</td>
<td>S20</td>
</tr>
</tbody>
</table>
1H and 13C NMR of Compound 6
1H and 13C NMR of Compound 2

Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is (c) The Royal Society of Chemistry 2011
1H and 13C NMR of Compound 8a
1H and 13C NMR of Compound 8b
1H and 13C NMR of Compound 8c

[Chemical structure image]

[Graph showing NMR spectra]
1H and 13C NMR of Compound 8d
1H and 13C NMR of Compound 8e
^{1}H and ^{13}C NMR of Compound 8f
1H and 13C NMR of Compound 8g

![NMR Spectra](image)
1H and 13C NMR of Compound 8h
1H and 13C NMR of Compound 8i
1H and 13C NMR of Compound 8j
1H and 13C NMR of Compound 8k
1H and 13C NMR of Compound 81
^1H and ^{13}C NMR of Compound 8m
1H and 13C NMR of Compound 8n
Biofilm Inhibition Dose-response Curves

Biofilm Inhibition of 8g vs MRSA

- Equation: \(y = 43.426 \ln(x) - 57.44 \)
- \(R^2 = 0.8857 \)
- \(\text{IC}_{50} = 11.871 \text{ µM} \)

Biofilm Inhibition of 8g vs MRSA

- Equation: \(y = 25.685 \ln(x) - 2.9057 \)
- \(R^2 = 0.9513 \)
- \(\text{IC}_{50} = 7.844 \text{ µM} \)

Biofilm Inhibition of 8i vs MRSA

- Equation: \(y = 80.344 \ln(x) - 115.03 \)
- \(R^2 = 0.9491 \)
- \(\text{IC}_{50} = 7.799 \text{ µM} \)

Biofilm Inhibition of 8i vs MRSA

- Equation: \(y = 67.483 \ln(x) - 100.44 \)
- \(R^2 = 0.8681 \)
- \(\text{IC}_{50} = 9.293 \text{ µM} \)

Biofilm Inhibition of 8j vs MRSA

- Equation: \(y = 56.353 \ln(x) - 39.268 \)
- \(R^2 = 0.9542 \)
- \(\text{IC}_{50} = 4.87 \text{ µM} \)

Biofilm Inhibition of 8j vs MRSA

- Equation: \(y = 42.659 \ln(x) - 10.409 \)
- \(R^2 = 0.8128 \)
- \(\text{IC}_{50} = 4.12 \text{ µM} \)

\(\text{IC}_{50} = 9.858 \pm 2.844 \text{ µM} \)

\(\text{IC}_{50} = 8.546 \pm 1.056 \text{ µM} \)

\(\text{IC}_{50} = 4.50 \pm 0.53 \text{ µM} \)
Biofilm Dispersion Dose-response Curves

Biofilm Dispersion of 8g vs A. baumannii

\[y = 39.339\ln(x) - 107.26 \]
\[R^2 = 0.9739 \]
\[EC_{50} = 54.465 \mu M \]

Biofilm Dispersion of 8h vs A. baumannii

\[y = 40.422\ln(x) - 109.33 \]
\[R^2 = 0.9608 \]
\[EC_{50} = 56.297 \mu M \]

Biofilm Dispersion of 8i vs A. baumannii

\[y = 46.647\ln(x) - 125.57 \]
\[R^2 = 0.9497 \]
\[EC_{50} = 46.292 \mu M \]

EC\(_{50}\) = 59.614±7.282 \mu M
EC\(_{50}\) = 53.900±3.389 \mu M
EC\(_{50}\) = 44.7018±2.248 \mu M

Biofilm Dispersion of 8g vs A. baumannii

\[y = 38.554\ln(x) - 110.79 \]
\[R^2 = 0.9952 \]
\[EC_{50} = 64.765 \mu M \]

Biofilm Dispersion of 8h vs A. baumannii

\[y = 31.384\ln(x) - 76.498 \]
\[R^2 = 0.9612 \]
\[EC_{50} = 56.297 \mu M \]

Biofilm Dispersion of 8i vs A. baumannii

\[y = 32.871\ln(x) - 76.059 \]
\[R^2 = 0.9618 \]
\[EC_{50} = 53.900±3.389 \mu M \]
Biofilm Disperion of 8j vs *A. baumannii*

\[
y = 34.905 \ln(x) - 83.612
\]

\[R^2 = 0.9645\]

\[EC_{50} = 45.965 \mu M\]

\[
y = 23.442 \ln(x) - 42.979
\]

\[R^2 = 0.8984\]

\[EC_{50} = 52.791 \mu M\]

EC_{50} = 49.378±4.827 \mu M

Growth curve plots for Compounds 8g, 8i and 8j vs MRSA at respective IC_{50} concentrations