Supporting Information
Functionalized Guanidinium Chloride Based Colourimetric Sensors for Fluoride and Acetate: Single Crystal X-ray Structural Evidence of -NH Deprotonation and Complexation

Purnandhu Bose, Nisar B. Ahamed and Pradyut Ghosh*
Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India. E-mail: icpg@iacs.res.in

Contents

1. Figure S1. 1H-NMR spectrum of S1 in DMSO-d$_6$ at 25ºC .. 4
2. Figure S2. 13C-NMR spectrum of S1 in DMSO- d$_6$ at 25ºC .. 5
3. Figure S3. HRMS (ESI) Spectrum of S1 .. 6
4. Figure S4. 1H-NMR spectrum of S2 in DMSO- d$_6$ at 25ºC .. 7
5. Figure S5. 13C-NMR spectrum of S2 in DMSO- d$_6$ at 25ºC .. 8
6. Figure S6. HRMS (ESI) Spectrum of S2 .. 9
7. Figure S7. 1H-NMR spectrum of S3 in DMSO- d$_6$ at 25ºC .. 10
8. Figure S8. 13C-NMR spectrum of S3 in DMSO- d$_6$ at 25ºC .. 11
9. Figure S9. HRMS (ESI) Spectrum of S3 .. 12
10. Figure S10. 1H-NMR spectrum of S4 in DMSO- d$_6$ at 25ºC .. 13
11. Figure S11. 13C-NMR spectrum of S4 in DMSO- d$_6$ at 25ºC .. 14
12. Figure S12. HRMS (ESI) Spectrum of S4 .. 15
13. Figure S13. 1H-NMR spectrum of S5 in DMSO- d$_6$ at 25ºC .. 16
14. Figure S14. 13C-NMR spectrum of S5 in DMSO- d$_6$ at 25ºC .. 17
15. **Figure S15.** HRMS (ESI) Spectrum of S5

16. **Figure S16.** 1H-NMR spectrum of S6 in DMSO- d_6 at 25°C

17. **Figure S17.** 13C-NMR spectrum of S6 in DMSO- d_6 at 25°C

18. **Figure S18.** HRMS (ESI) Spectrum of S6

19. **Figure S19.** 1H-NMR spectrum of S7 in DMSO- d_6 at 25°C

20. **Figure S20.** 13C-NMR spectrum of S7 in DMSO- d_6 at 25°C

21. **Figure S21.** HRMS (ESI) Spectrum of S7

22. **Figure S22.** 1H-NMR spectrum of S8 in DMSO- d_6 at 25°C

23. **Figure S23.** 13C-NMR spectrum of S8 in DMSO- d_6 at 25°C

24. **Figure S24.** HRMS (ESI) Spectrum of S8

25. **Figure S25.** 1H-NMR spectrum of S9 in DMSO- d_6 at 25°C

26. **Figure S26.** 13C-NMR spectrum of S9 in DMSO- d_6 at 25°C

27. **Figure S27.** HRMS (ESI) Spectrum of S9

28. **Figure S28.** 1H-NMR spectrum of S10 in DMSO- d_6 at 25°C

29. **Figure S29.** 13C-NMR spectrum of S10 in DMSO- d_6 at 25°C

30. **Figure S30.** HRMS (ESI) Spectrum of S10

31. **Figure S31.** Optical spectrum of S5-S9 in presence of various anions

32. **Figure S32.** Optical spectrum of S10-S12 in presence of various anions

33. **Figure S33.** Selectivity study of S9 (1x10$^{-4}$ M) in presence of different anions (30 equiv.)

34. **Figure S34.** UV-Vis titration of S1 in presence of F

35. **Figure S35.** UV-Vis titration of S2 in presence of F
36. Figure S36. UV-Vis titration of S2 in presence of AcO⁻
37. Figure S37. UV-Vis titration of S2 in presence of H2PO4⁻
38. Figure S38. UV-Vis titration of S3 in presence of F⁻
39. Figure S39. UV-Vis titration of S3 in presence of AcO⁻
40. Figure S40. UV-Vis titration of S3 in presence of H2PO4⁻
41. Figure S41. UV-Vis titration of S4 in presence of F⁻
42. Figure S42. UV-Vis titration of S4 in presence of AcO⁻
43. Figure S43. UV-Vis titration of S6 in presence of F⁻
44. Figure S44. UV-Vis titration of S6 in presence of AcO⁻
45. Figure S45. UV-Vis titration of S7 in presence of F⁻
46. Figure S46. UV-Vis titration of S8 in presence of F⁻
47. Figure S47. UV-Vis titration of S9 in presence of F⁻
48. Figure S48. UV-Vis titration of S9 in presence of AcO⁻
49. Figure S49. UV-Vis titration of S9 in presence of H2PO4⁻
50. Figure S50. UV-Vis titration of S10 in presence of F⁻
51. Table S1. Table of Crystallographic parameters
52. Table S2. Hydrogen bonding interactions in 1
53. Table S3. Hydrogen bonding interactions in complex 2
54. Table S4. Hydrogen bonding interactions in complex 3
55. Methods and References
Figure S1. 1H NMR spectrum of S1 in DMSO-d_6.
Figure S2. 13C NMR spectrum of S1 in DMSO-d$_6$.
Figure S3. HRMS spectrum of S1
Figure S4. 1H NMR spectrum of S2 in DMSO-d$_6$.
Figure S5. 13C NMR spectrum of S2 in DMSO-d$_6$.
Figure S6. HRMS spectrum of S2.
Figure S7. 1H NMR spectrum of S3 in DMSO-d_6.
Figure S8. 13C NMR spectrum of S3 in DMSO-d_6.
Figure S9. HRMS spectrum of S3.
Figure S10. 1H NMR spectrum of S4 in DMSO-d$_6$.
Figure S11. 13C NMR spectrum of S4 in DMSO-d_6.
Figure S12. HRMS spectrum of S4.
Figure S13. 1H NMR spectrum of S5 in DMSO-d$_6$.
Figure S14. 13C NMR spectrum of S5 in DMSO-d_6.
Figure S15. HRMS spectrum of S5.
Figure S16. 1H NMR spectrum of S6 in DMSO-d$_6$.
Figure S17. 13C NMR spectrum of S6 in DMSO-d$_6$.
Figure S18. HRMS spectrum of S6.
Figure S19. 1H NMR spectrum of S7 in DMSO-d_6.
Figure S20. 13C NMR spectrum of S7 in DMSO-d$_6$.
Figure S21. HRMS spectrum of S7.
Figure S22. 1H NMR spectrum of S8 in DMSO-d$_6$.
Figure S23. 13C NMR spectrum of S8 in DMSO-d$_6$.
Figure S24. HRMS spectrum of S8.
Figure S25. 1H NMR spectrum of S9 in DMSO-d_6.
Figure S26. 13C NMR spectrum of S9 in DMSO-d$_6$.

Figure S26. 13C NMR spectrum of S9 in DMSO-d$_6$.

Figure S27. HRMS spectrum of S9.
Figure S28. 1H NMR spectrum of S10 in DMSO-d$_6$.
Figure S29. 13C NMR spectrum of S10 in DMSO-d$_6$.
Figure S30. HRMS spectrum of S10.
Figure S31. Changes in the UV-Vis absorption spectrum a)-e) of S5-S9 (1.0×10⁻⁴ M) in MeCN/DMF (9.6:0.4)(v/v) solution upon addition of 50 equiv of anions.
Figure S32. Changes in the UV/vis/NIR absorption spectrum of S10-S12 (1.0×10⁻⁵ M) in MeCN/DMF(9.6:0.4)(v/v) solution upon addition of 50 equiv of different anions.
Figure S33. Selectivity study of S9 (1x10^{-4} M) in presence of different anions (30 equiv.).
Figure S34. a) UV-Vis absorption changes of the titration of a 1.0×10⁻⁵ M solution of S1 in MeCN/DMF (9.6:0.4)(v/v) with a standard solution of 0.01 (M) [Bu₄N]F in MeCN. b) Absorbance changes for S1 at 350 nm on addition of various concentration of [Bu₄N]F. c) Benesi–Hildebrand plot.

\[
y = 0.00373x + 0.05527
\]

\[
R^2 = 0.9867
\]

\[
\log K = 2.42
\]
Figure S35. a) UV-Vis absorption changes of the titration of a 1.0×10^{-5} M solution of S2 in MeCN/DMF (9.6:0.4)(v/v) with a standard solution of 0.01(M) [Bu4N]F in MeCN. b) Absorbance changes for S2 at 514 nm on addition of various concentration of [Bu4N]F. c) Benesi–Hildebrand plot.

$$y = 0.02021x - 13.49295$$

$$R^2 = 0.98671$$

$$\log K = 1.69$$
Figure S36. a) UV-Vis absorption changes of the titration of a 1.0×10⁻⁵ M solution of S2 in MeCN/DMF(9.6:0.4)(v/v) with a standard solution of 0.01(M) [Bu₄N]AcO in MeCN. b) Absorbance changes for S2 at 428 nm on addition of various concentration of [Bu₄N]AcO. c) Benesi–Hildebrand plot.
Figure S37. a) UV-Vis absorption changes of the titration of a 1.0×10^{-5} M solution of S2 in MeCN/DMF (9.6:0.4)(v/v) with a standard solution of 0.01(M) [Bu4N]H2PO4 in MeCN. b) Absorbance changes for S2 at 430 nm on addition of various concentration of [Bu4N] H2PO4. c) Benesi–Hildebrand plot.

Mathematical expressions:

\[y = 0.00601x - 0.41421 \]

\[R^2 = 0.98876 \]

\[\log K = 2.22 \]
Figure S38. a) UV-Vis absorption changes of the titration of a 1.0×10⁻⁵ M solution of S3 in MeCN/DMF(9.6:0.4)(v/v) with a standard solution of 0.01(M) [Bu₄N]F in MeCN. b) Absorbance changes for S3 at 600 nm on addition of various concentration of [Bu₄N]F in MeCN. c) Benesi–Hildebrand plot.

$$y = 0.000622x + 0.54754$$

$$R^2 = 0.98231$$

$$\log K = 3.20$$
Figure S39. a) UV-Vis absorption changes of the titration of a 1.0×10^{-5} M solution of S3 in MeCN/DMF (9.6:0.4)(v/v) with a standard solution of 0.01(M) [Bu₄N]AcO in MeCN. b) Absorbance changes for S3 at 478 nm on addition of various concentration of [Bu₄N]AcO. c) Benesi–Hildebrand plot.

\[y = 0.000823x + 0.80247 \]

\[R^2 = 0.99494 \]

\[\log K = 3.08 \]
Figure S40. a) UV-Vis absorption changes of the titration of a 1.0×10^{-5} M solution of S3 in MeCN/DMF(9.6:0.4)(v/v) with a standard solution of 0.01(M) [Bu4N]H2PO4 in MeCN. b) Absorbance changes for S3 at 503 nm on addition of various concentration of [Bu4N]H2PO4. c) Benesi–Hildebrand plot.
Figure S41. a) UV-Vis absorption changes of the titration of a 1.0×10^{-5} M solution of S4 in in MeCN/DMF(9.6:0.4)(v/v) with a standard solution of 0.01 (M) [Bu$_4$N]F in MeCN. b) Absorbance changes for S4 at 586 nm on addition of various concentration of [Bu$_4$N]F. c) Benesi–Hildebrand plot.

$A = \frac{(A_{\text{max}} - A_{\text{min}})}{(A - A_{\text{min}})}$

$R^2 = 0.98488$

$logK = 2.51$
Figure S42. a) UV-Vis absorption changes of the titration of a 1.0×10⁻⁵ M solution of S⁴ in MeCN/DMF (9.6:0.4)(v/v) with a standard solution of 0.01 (M) [Bu₄N]AcO in MeCN. b) Absorbance changes for S⁴ at 473 nm on addition of various concentration of [Bu₄N]AcO. c) Benesi–Hildebrand plot.
Figure S43. a) UV-Vis absorption changes of the titration of a 1.0×10^{-5} M solution of S6 in MeCN/DMF (9.6:0.4)(v/v) with a standard solution of 0.01 (M) [Bu_4N]F in MeCN. b) Absorbance changes for S6 at 468 nm on addition of various concentration of [Bu_4N]F. c) Benesi–Hildebrand plot.

\[y = 0.000278x + 0.05107 \]
\[R^2 = 0.98385 \]
\[\log K = 4.55 \]
Figure S44. a) UV-Vis absorption changes of the titration of a 1.0×10^{-5} M solution of S6 in MeCN/DMF(9.6:0.4)(v/v) with a standard solution of 0.01(M) [Bu4N]AcO in MeCN. b) Absorbance changes for S6 at 468 nm on addition of various concentration of [Bu4N]AcO. c) Benesi–Hildebrand plot.

\[y = 0.000728x + 0.54123 \]

\[R^2 = 0.99515 \]

\[\log K = 3.13 \]
Figure S45. a) UV-Vis absorption changes of the titration of a 1.0×10⁻⁵ M solution of S7 in MeCN/DMF(9.6:0.4)(v/v) with a standard solution of 0.01 (M) [Bu₄N]F in MeCN. b) Absorbance changes for S7 at 586 nm on addition of various concentration of [Bu₄N]F. c) Benesi–Hildebrand plot.
Figure S46. a) UV-Vis absorption changes of the titration of a 1.0×10^{-5} M solution of S8 in MeCN/DMF (9.6:0.4)(v/v) with a standard solution of 0.01 (M) [Bu4N]F in MeCN. b) Absorbance changes for S8 at 462 nm on addition of various concentration of [Bu4N]F. c) Benesi–Hildebrand plot.

$y = 0.00858x + 0.89378$

$R^2 = 0.99688$

$logK = 2.1$
Figure S47. a) UV-Vis absorption changes of the titration of a 1.0×10⁻⁵ M solution of S9 in MeCN/DMF (9.6:0.4)(v/v) with a standard solution of 0.01 (M) [Bu₄N]F in MeCN. b) Absorbance changes for S9 at 642 nm on addition of various concentration of [Bu₄N]F. c) Benesi–Hildebrand plot.

\[y = 0.0000681x + 0.81418 \]
\[R^2 = 0.98945 \]
\[\log K = 4.17 \]
Figure S48. a) UV-Vis absorption changes of the titration of a 1.0×10^{-5} M solution of S9 in MeCN/DMF(9.6:0.4)(v/v) with a standard solution of 0.01 (M) [Bu4N]AcO in MeCN. b) Absorbance changes for S9 at 642 nm on addition of various concentration of [Bu4N]AcO. c) Benesi–Hildebrand plot.
Figure S49. a) UV-Vis absorption changes of the titration of a 1.0×10^{-5} M solution of S9 in MeCN/DMF(9.6:0.4)(v/v) with a standard solution of 0.01 (M) [Bu4N]H2PO4 in MeCN. b) Absorbance changes for S9 at 441 nm on addition of various concentration of [Bu4N]H2PO4. c) Benesi–Hildebrand plot.
Figure S50. a) UV-Vis absorption changes of the titration of a 1.0×10^{-5} M solution of S10 in MeCN/DMF(9.6:0.4)(v/v) with a standard solution of 0.01(M) $[\text{Bu}_4\text{N}]\text{F}$ in MeCN. b) Absorbance changes for S10 at 354 nm on addition of various concentration of $[\text{Bu}_4\text{N}]\text{F}$. c) Benesi–Hildebrand plot.
Table S1. Table of Crystallographic parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1</th>
<th>Complex 2</th>
<th>Complex 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>(\text{C}_{16} \text{H}9 \text{F}{10} \text{N}_5 \text{O})</td>
<td>(\text{C}{36} \text{H}{22} \text{F}_{10} \text{N}_5 \text{O}_6)</td>
<td>(\text{C}{37} \text{H}{31} \text{N}_5 \text{O}_4)</td>
</tr>
<tr>
<td>Formula weight</td>
<td>477.28</td>
<td>810.59</td>
<td>609.67</td>
</tr>
<tr>
<td>crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>(\text{P}_2(1)/\text{n})</td>
<td>(\text{P}_2(1)/\text{m})</td>
<td>(\text{P}_{\text{bca}})</td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>16.012(10)</td>
<td>6.8654(13)</td>
<td>14.5032(10)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>11.932(7)</td>
<td>34.567(6)</td>
<td>9.6882(7)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>19.682(12)</td>
<td>7.1380(14)</td>
<td>44.522(3)</td>
</tr>
<tr>
<td>(\alpha) (deg)</td>
<td>90.00</td>
<td>90.00</td>
<td>90.00</td>
</tr>
<tr>
<td>(\beta) (deg)</td>
<td>104.571(8)</td>
<td>98.565(4)</td>
<td>90.000</td>
</tr>
<tr>
<td>(\gamma) (deg)</td>
<td>90.00</td>
<td>90.000</td>
<td>90.000</td>
</tr>
<tr>
<td>(V) (Å³)</td>
<td>3639(4)</td>
<td>1675.1(5)</td>
<td>6255.7 (8)</td>
</tr>
<tr>
<td>(Z)</td>
<td>8</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>(d_{\text{calc}}) (g/cm³)</td>
<td>1.742</td>
<td>1.607</td>
<td>1.295</td>
</tr>
<tr>
<td>Crystal size (mm³)</td>
<td>0.32 x 0.07 x 0.05</td>
<td>0.15 x 0.09 x 0.08</td>
<td>0.18 x 0.03 x 0.02</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Smart CCD</td>
<td>Smart CCD</td>
<td>Smart CCD</td>
</tr>
<tr>
<td>(F(000))</td>
<td>1904</td>
<td>822</td>
<td>2560</td>
</tr>
<tr>
<td>(\mu) (MoKα mm⁻¹)</td>
<td>0.184</td>
<td>0.148</td>
<td>0.086</td>
</tr>
<tr>
<td>(T) (K)</td>
<td>120 (2)</td>
<td>100 (2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>(\theta) max</td>
<td>24.39</td>
<td>25.00</td>
<td>25.00</td>
</tr>
<tr>
<td>ObservedReflections</td>
<td>23147</td>
<td>15838</td>
<td>55819</td>
</tr>
<tr>
<td>Parameters refined</td>
<td>633</td>
<td>232</td>
<td>417</td>
</tr>
<tr>
<td>(R_1; \text{WR}_2)</td>
<td>0.0499 ; 0.1123</td>
<td>0.0334 ; 0.0842</td>
<td>0.0879 ; 0.2308</td>
</tr>
<tr>
<td>GOF ((F^2))</td>
<td>1.022</td>
<td>1.078</td>
<td>1.161</td>
</tr>
</tbody>
</table>
Table S2. Hydrogen bonding interactions in 1.

<table>
<thead>
<tr>
<th>D-H•••A</th>
<th>D-H (Å)</th>
<th>H•••A(Å)</th>
<th>D•••A(Å)</th>
<th>□ D-H•••A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N9-H9···O42</td>
<td>0.843</td>
<td>1.944</td>
<td>2.766(5)</td>
<td>165.0</td>
</tr>
<tr>
<td>O44-H44···N12</td>
<td>0.800</td>
<td>2.042</td>
<td>2.807(6)</td>
<td>160.0</td>
</tr>
<tr>
<td>N29-H29···O44</td>
<td>0.895</td>
<td>1.914</td>
<td>2.790(6)</td>
<td>165.7</td>
</tr>
<tr>
<td>O42-H42···N32</td>
<td>0.850</td>
<td>1.982</td>
<td>2.821</td>
<td>169.2</td>
</tr>
</tbody>
</table>

Table S3. Hydrogen bonding interactions in Complex 2.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N11-H11···O25</td>
<td>0.860</td>
<td>2.070</td>
<td>2.8623(18)</td>
<td>152.3</td>
</tr>
<tr>
<td>N9-H9···O17</td>
<td>0.860</td>
<td>1.930</td>
<td>2.7916(14)</td>
<td>178.1</td>
</tr>
<tr>
<td>O26-H26···O17</td>
<td>0.820</td>
<td>1.810</td>
<td>2.6179(11)</td>
<td>170.6</td>
</tr>
</tbody>
</table>
Table S4. Hydrogen bonding interactions in Complex 3.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O3-H3X···O2</td>
<td>0.820</td>
<td>1.770</td>
<td>2.593(4)</td>
<td>175.40</td>
</tr>
<tr>
<td>N2-H2A···O1</td>
<td>0.860</td>
<td>1.930</td>
<td>2.710(4)</td>
<td>149.90</td>
</tr>
<tr>
<td>N3-H3A···O1</td>
<td>0.860</td>
<td>2.240</td>
<td>2.970(4)</td>
<td>142.70</td>
</tr>
<tr>
<td>N3-H3B···O4</td>
<td>0.860</td>
<td>2.180</td>
<td>2.899(4)</td>
<td>140.80</td>
</tr>
<tr>
<td>N4-H4A···O2</td>
<td>0.860</td>
<td>1.920</td>
<td>2.741(4)</td>
<td>158.90</td>
</tr>
</tbody>
</table>
Methods.

The binding constant values of anions with S1-S10 have been determined from the absorption data following the modified Benesi–Hildebrand equation.

\[
\frac{1}{\Delta A} = \frac{1}{\Delta A_{\text{max}}} + \left(\frac{1}{K[\text{Anion}]}\right)\left(\frac{1}{\Delta A_{\text{max}}}\right).
\]

Here, \(\Delta A = A - A_{\text{min}}\), \(\Delta A_{\text{max}} = A_{\text{max}} - A_{\text{min}}\).

Where, \(A_{\text{min}}, A, A_{\text{max}}\) are the absorption of S1-S10 considered in the absence of anions, at an intermediate, and at a concentration of complete concentration.

\(K\) is Binding constant, \([\text{Anion}]\) is concentration of anion.

From the Plot of \((A_{\text{max}} - A_{\text{min}})/(A - A_{\text{min}})\) against \([\text{Anion}]\) for S1-S10, the value of \(K (\pm 10\%)\) extracted from the slope.

References

(5) Mercury 2.2 supplied with Cambridge Structural Database, CCDC, Cambridge, UK.