A Rational Approach to Tuning the pKa Values of Rhodamines for Living Cell Fluorescence Imaging

Lin Yuan, Weiying Lin,* and Yanming Feng

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
E-mail: weivinglin@hnu.cn

Table of contents

Materials and instruments……………………………………………………….2
Cell culture and fluorescence imaging………………………………………….2
Synthesis…………………………………………………………………………..2
Figure S1………………………………………………………………………….7
Figure S2………………………………………………………………………….7
Figure S3………………………………………………………………………….8
Figure S4………………………………………………………………………….8
Figure S5………………………………………………………………………….9
Figure S6………………………………………………………………………….10
Figure S7………………………………………………………………………….10
Figure S8………………………………………………………………………….11
Figure S9………………………………………………………………………….11
Figure S10………………………………………………………………………….12
Figure S11………………………………………………………………………….13
Table S1…………………………………………………………………………13
Table S2…………………………………………………………………………13
Figure S12……………………………………………………………………….14
Figure S13……………………………………………………………………….14
Figure S14……………………………………………………………………….15
Figure S15……………………………………………………………………….15
Figure S16……………………………………………………………………….16
Cytotoxicity assay……………………………………………………………..16
Figure S17……………………………………………………………………….17
Figure S18……………………………………………………………………….18
Materials and instruments: Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Solvents used were purified by standard methods prior to use. Twice-distilled water was used throughout all experiments. Melting points of compounds were measured on a Beijing Taike XT-4 microscopy melting point apparatus, and all melting points were uncorrected; Mass spectra were performed using an LCQ Advantage ion trap mass spectrometer from Thermo Finnigan or Agilent 1100 HPLC/MSD spectrometer; NMR spectra were recorded on an INOVA-400 spectrometer, using TMS as an internal standard; Electronic absorption spectra were obtained on a LabTech UV Power spectrometer; Photoluminescent spectra were recorded with a HITACHI F4600 fluorescence spectrophotometer; Cells imaging was performed with a Nikon Eclipse TE300 inverted microscope; TLC analysis was performed on silica gel plates and column chromatography was conducted over silica gel (mesh 200–300), both of which were obtained from the Qingdao Ocean Chemicals.

Cell culture and fluorescent imaging: Hela cells were grown in MEM (modified Eagle’s medium) supplemented with 10% FBS (fetal bovine serum) in an atmosphere of 5% CO2 and 95% air at 37 °C. The cells were plated on 12-well plates and allowed to adhere for 24 h. Immediately before the experiments, the cells were washed with PBS buffer, and then the cells were incubated with probe 1e (2 µM) for 30 min at 37 °C. Subsequently, the cells were washed in PBS medium of varying pH values (pH was adjusted by adding small amounts of 0.2 N solution of NaOH or 0.1 N solution of HCl, and 1 µg/mL of nigericin (Aldrich) was added to the medium to induce a rapid exchange of K+ for H+ for a fast equilibration of external and internal pH. Then the fluorescence images were acquired through a Nikon Eclipse TE300 inverted fluorescence microscope equipped with a cooled CCD camera, excitation with green light.

General approach for the synthesis of compounds 1a-e:
To a solution of rhodamine 6G acid 3a (225.1 mg, 0.5 mmol) in dry 1, 2-dichloroethane (8.0 ml) at room temperature, phosphorus oxychloride (0.25 mL) was added dropwise over a period of 5 min. After being refluxed for 8 h, the reaction mixture was cooled and concentrated under vacuum to give rhodamine 6G acid chloride. Without further purification, the resulting acid chloride was dissolved in dry THF (10 mL), and then was added dropwise to a solution of amines 4a-e (0.6 mmol) in dry THF (10 ml) containing triethylamine (0.1 mL). After stirring for 8 h at room temperature, the mixture was concentrated under vacuum and the crude product was purified by column chromatography (CH2Cl2) to give compounds 1a-e as a white solid.

![Chemical structure of compound 1a](image_url)

1a: (209.8 mg, 91.6% yield); m.p. 263–268 °C; UV-vis (pH 3.0 H2O/DMF 4: 1, v/v) λ_max (log ε): 530 (4.87); 1H NMR (400 MHz, CDCl3): δ = 1.32-1.35 (t, 6H), 1.93 (s, 6H), 3.19-3.26 (m, 6H), 3.43-3.46 (t, 2H), 6.29 (s, 2H), 6.37 (s, 2H), 7.03-7.05 (m, 1H), 7.45-7.48 (m, 2H), 7.92-7.94 (m,
1H; 13C NMR (100 MHz, CDCl$_3$): δ = 14.64, 16.76, 38.43, 44.69, 62.64, 65.98, 96.66, 118.25, 122.95, 123.79, 128.07, 128.20, 130.31, 132.82 151.60, 153.87, 170.12; ESI-MS m/z: 458.2 [M+H]$^+$; EI-MS m/z: 457.3 [M]$^+$; HRMS (EI): m/z calcd for C$_{28}$H$_{31}$O$_3$N$_3$ [M]$^+$ 457.2360; Found 457.2354.

1b: (152.4 mg, 58.6% yield): m.p. 245~250 °C; UV-vis (pH 3.0 H$_2$O/DMF 4: 1, v/v) λ_{max} (log ε): 532 (4.96); 1H NMR (400 MHz, d_6-CD$_3$COCD$_3$): δ =1.25-1.29 (t, 6H), 1.97 (s, 6H), 3.15-3.19 (q, 4H), 6.19 (s, 2H), 6.43 (s, 2H), 6.52-6.55 (m, 5H), 6.76-6.78 (d, J = 7.6 Hz, 1H), 7.07-7.09 (dd, J = 7.6 Hz, 1H), 7.56-7.58 (m, 2H), 7.90-7.92 (dd, J = 7.6 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$): δ = 14.11, 14.71, 16.77, 38.37, 68.10, 68.90, 96.66, 106.49, 115.89, 117.74, 123.34, 124.20, 127.58, 128.26, 128.55, 129.17, 129.73, 130.03, 131.65, 132.83, 147.31, 151.88, 152.82, 155.45, 167.89, 173.32; ESI-MS m/z: 506.2 [M+H]$^+$. EI-MS m/z: 505.3 [M]$^+$; HRMS (EI): m/z calcd for C$_{32}$H$_{31}$O$_3$N$_3$ [M]$^+$ 505.2360; Found 505.2355.

1c: (186.2 mg, 71.6% yield): m.p. 256~260 °C; UV-vis (pH 3.0 H$_2$O/DMF 4: 1, v/v) λ_{max} (log ε): 534 (4.97); 1H NMR (400 MHz, CDCl$_3$): δ =1.29-1.32 (t, 6H), 1.92 (s, 6H), 3.14-3.19 (q, 4 H), 3.51 (bs, 2H), 6.27 (s, 2H), 6.39-6.42 (dd, J = 8.0, 2.0 Hz, 1H), 6.45 (s, 2H), 6.55-6.59 (m, 1H), 6.75 (s, 1H), 6.88-6.90 (dd, J = 8.0, 1.2 Hz, 1H), 6.99-7.04 (m, 1H), 7.08-7.10 (m, 1H), 7.50-7.52 (m, 2H), 8.02-8.04 (m, 1H); 13C NMR (100 MHz, CDCl$_3$): δ = 14.65, 16.74, 38.29, 69.11, 96.64, 106.06, 118.14, 119.78, 120.72, 123.43, 123.94, 124.99, 125.33, 127.97, 128.31, 128.40, 129.27, 133.30, 147.48, 151.29, 152.07, 154.98, 168.76; ESI-MS m/z: 506.4 [M+H]$^+$. EI-MS m/z: 505.3 [M]$^+$; HRMS (EI): m/z calcd for C$_{32}$H$_{31}$O$_3$N$_3$ [M]$^+$ 505.2360; Found 505.2357.
1d: (202.8 mg, 75.1% yield): m.p. 260–264 °C; UV-vis (pH 3.0 H2O/DMF 4: 1, v/v) \(\lambda_{\text{max}} \) (log \(\varepsilon \)): 534 (4.96); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 1.10-1.14 \) (t, 3H), 1.33-1.37 (t, 3H), 1.88 (s, 3H), 2.03 (s, 3H), 2.92-2.96 (m, 2H), 3.19-3.23 (m, 2H), 6.26 (s, 1H), 6.28-6.30 (dd, \(J = 8.0, 2.0 \) Hz, 1H), 6.52 (s, 1H), 6.57 (s, 1H), 7.11-7.19 (m, 2H), 7.25-7.29 (m, 3H), 7.45-7.47 (d, \(J = 8.4 \) Hz, 1H), 7.62-7.67 (m, 4H), 8.11-8.14 (m, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 14.35, 14.63, 16.58, 16.89, 38.53, 58.74, 69.83, 118.17, 123.64, 124.34, 124.49, 125.09, 125.43, 126.04, 127.82, 128.44, 128.53, 128.75, 129.65, 130.74, 132.39, 132.66, 132.86, 134.07, 147.43, 151.96, 152.06, 152.76; ESI-MS m/z: 540.4 [M+H]+; EI-MS m/z: 539.3 [M]+; HRMS (EI): m/z calcd for C\(_{36}H_{33}O_2N_3\) [M]+ 539.2567; Found 539.2560.

1e: (223.0 mg, 81.4 % yield): m.p. 272–275 °C; UV-vis (pH 3.0 H2O/DMF 4: 1, v/v) \(\lambda_{\text{max}} \) (log \(\varepsilon \)): 532 (5.03); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 1.32-1.36 \) (t, 6H), 1.48-1.49 (d, \(J = 2.8 \) Hz, 6H), 1.86 (s, 3H), 1.95 (s, 6H), 2.11 (d, \(J = 2.0 \) Hz, 6H), 3.21-3.23 (q, 4H), 6.35 (bs, 2H), 6.457 (s, 2H), 6.74-6.76 (dd, \(J = 6.4, 2.0 \) Hz, 1H), 7.28-7.33 (m, 2H), 7.78-7.80 (m, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 14.73, 16.76, 29.85, 36.31, 38.59, 39.07, 59.31, 65.55, 97.04, 117.48, 122.17, 122.85, 127.27, 128.64, 129.93, 132.14, 146.89, 149.82, 155.61, 169.47 ppm. ESI-MS m/z: 548.5 [M+H]+; EI-MS m/z: 547.4 [M]+; HRMS (EI): m/z calcd for C\(_{36}H_{41}O_2N_3\) [M]+ 547.3193; Found 547.3192.

General approach for the synthesis of compounds 2a-e: To a solution of rhodamine B acid 3b (239.1 mg, 0.5 mmol) in dry 1, 2-dichloroethane (10.0 ml) at room temperature, phosphorus oxychloride (0.25 mL) was added dropwise over a period of 5 min. After being refluxed for 8 h, the reaction mixture was cooled and concentrated under vacuum to give rhodamine B acid chloride. Without further purification, the resulting acid chloride was dissolved in dry THF (10 ml), and then was added dropwise to a solution of amines 4a-e (0.6 mmol) in dry THF (10 ml) containing triethylamine (0.1 mL). After stirring for 8 h at room temperature, the mixture was concentrated under vacuum and the crude product was purified by column chromatography (CH\(_2\)Cl\(_2\)) to give compounds 2a-e as a white solid.
2a: (215.4 mg, 88.6% yield): m.p. 212–214 °C; UV-vis (pH 3.7 H₂O/DMF 4: 1, v/v) λₘₐₓ (log ε): 560 (3.82); ¹H NMR (400 MHz, CDCl₃): δ = 1.16-1.20 (t, 12H), 3.28-3.37 (m, 10H), 3.46-3.47 (q, 2H), 6.29-6.30 (d, J = 8.0 Hz, 2H), 6.39 (s, 2H), 6.49-6.52 (d, J = 7.6 Hz, 2H), 7.06-7.10 (m, 1H), 7.44-7.48 (m, 2H), 7.89-7.93 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 12.58, 44.38, 44.64, 62.62, 97.81, 108.27, 122.93, 123.80, 128.18, 128.52, 130.43, 132.72, 148.92, 153.24, 170.09; ESI-MS m/z: 486.2 [M+H]⁺.

2b: (137.8 mg, 51.6% yield): m.p. 218–222 °C; UV-vis (pH 3.5 H₂O/DMF 4: 1, v/v) λₘₐₓ (log ε): 562 (3.74); ¹H NMR (400 MHz, CDCl₃): δ = 1.11-1.15 (t, 12H), 3.29-3.31 (q, 8H), 6.19 (s, 2H), 6.22-6.24 (d, J = 8.0 Hz, 2H), 6.28-6.34 (m, 4H), 6.55-6.57 (d, J = 8.4 Hz, 2H), 7.11 (bs, 1H), 7.19-7.22 (m, 1H), 7.25 (s, 2H), 7.97-7.99 (d, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 12.53, 44.28, 64.9, 97.87, 105.65, 108.32, 119.84, 120.76, 123.39, 123.97, 125.09, 125.47, 128.31, 128.39, 129.39, 133.21, 148.94, 152.14, 152.92, 154.94, 168.74; ESI-MS m/z: 533.4 [M+H]⁺.

2c: (170.4 mg, 63.8% yield): m.p. 190–195 °C; UV-vis (pH 3.5 H₂O/DMF 4: 1, v/v) λₘₐₓ (log ε): 562 (3.91); ¹H NMR (400 MHz, CDCl₃): δ = 1.12-1.16 (t, 12H), 3.28-3.33 (q, 8H), 6.29-6.30 (m, 4H), 6.46-6.48 (d, J = 8.0 Hz, 1H), 6.59-6.66 (m, 3H), 6.79 (s, 1H), 6.89-6.92 (d, J = 7.6 Hz, 1H), 7.02-7.06 (m, 1H), 7.11-7.14 (m, 1H), 7.49-7.50 (m, 2H), 7.99-8.02(m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 12.52, 44.26, 69.07, 97.77, 105.53, 108.24, 119.87, 120.78, 123.38, 123.96, 125.03, 125.47, 128.29, 128.39, 129.29, 133.23, 148.88, 152.06, 152.88, 154.94, 168.77; ESI-MS m/z: 534.4 [M+H]⁺.
2d: (195.7 mg, 68.9% yield): m.p. 198–202 °C; UV-vis (pH 3.7 H2O/DMF 4: 1, v/v) λ_{max} (log ε): 564 (3.97); 1H NMR (400 MHz, CDCl₃): $\delta = 0.93-0.97$ (t, 6H), 1.14-1.18 (t, 6H), 3.11-3.14 (q, 4H), 3.32-3.36 (q, 4H), 5.85 (s, 1H), 6.19-6.23 (m, 2H), 6.32-6.33 (d, $J = 7.6$ Hz, 1H), 6.40-6.43 (dd, $J = 8.8$, 2.4 Hz, 1H), 6.68-6.70 (d, $J = 8.8$ Hz, 1H), 6.73-6.75 (d, $J = 9.2$ Hz, 1H), 7.08-7.15 (m, 2H), 7.21-7.25 (t, 1H), 7.34-7.37 (m, 2H), 7.58-7.66 (m, 4H), 8.09-8.11 (m, 1H); 13C NMR (100 MHz, CDCl₃): $\delta = 12.58, 44.38, 44.64, 62.62, 97.81, 104.79, 108.27, 122.93, 123.80, 128.18, 128.52, 130.43, 132.72, 148.92, 153.24, 153.86, 170.09$. ESI-MS m/z: 568.5 [M+H]$^+$.

2e: (208.6 mg, 72.4 % yield): m.p. 236–240°C; UV-vis (pH 5.5 H₂O/DMF 4: 1, v/v) λ_{max} (log ε): 564 (4.79); 1H NMR (400 MHz, CDCl₃): $\delta = 1.16-1.19$ (t, 12H), 1.49-1.51 (m, 6H), 1.89 (s, 3H), 2.14 (s, 6H), 3.32-3.37 (q, 8H), 6.26-6.29 (dd, $J = 8.8$, 2.0 Hz, 2H), 6.34-6.35 (d, $J = 2.0$ Hz, 2H), 6.62-6.64 (d, $J = 8.8$ Hz, 2H), 6.79-6.82 (m, 1H) 7.28-7.30 (m, 2H) 7.75-7.78 (m, 1H); 13C NMR (100 MHz, CDCl₃): $\delta = 12.59, 29.78, 36.26, 38.93, 41.48, 44.27, 59.11, 97.97, 107.63, 108.55, 122.08, 122.82, 127.18, 128.69, 129.87, 132.05, 148.43, 151.37, 155.60, 169.65 ppm; ESI-MS m/z: 576.3 [M+H]$^+$. EI-MS m/z: 575.3 [M]$^+$. HRMS (EI): m/z calcd for $C_{38}H_{45}O_2N_3$ [M]$^+$ 575.3506; Found 575.3497.
Fig. S1. A) pH-dependence of the fluorescence intensity of compound 2a (2 μM) excited at 510 nm with the arrow indicating the change of the fluorescence intensities with pH decrease from 7.4 to 2.0. B) For comparison, the fluorescence spectra of compound 2a (2 μM) and rhodamine B acid 3b (2 μM) at pH 2.0 were displayed. Spectra were obtained with excitation at 510 nm in 25 mM PBS aqueous solution (containing 20% DMF as a co-solvent).

Fig. S2. A) pH-dependence of the fluorescence intensity of compound 2b (2 μM) excited at 510 nm with arrows indicating the change of the fluorescence intensities with pH decrease from 7.4 to 2.0. B) For comparison, the fluorescence spectra of compound 2b (2 μM) and rhodamine B acid 3b (2 μM) at pH 2.0 were displayed. Spectra were obtained with excitation at 510 nm in 25 mM PBS aqueous solution (containing 20% DMF as a co-solvent).
Fig. S3. A) pH-dependence of the fluorescence intensity of compound 2c (2 μM) excited at 510 nm with arrows indicating the change of the fluorescence intensities with pH decrease from 7.4 to 2.0. B) For comparison, the fluorescence spectra of compound 2c (2 μM) and rhodamine B acid 3b (2 μM) at pH 2.0 were displayed. Spectra were obtained with excitation at 510 nm in 25 mM PBS aqueous solution (containing 20% DMF as a co-solvent).

Fig. S4. A) pH-dependence of the fluorescence intensity of compound 2d (2 μM) excited at 510 nm with arrows indicating the change of the fluorescence intensities with pH decrease from 7.4 to 2.0. B) For comparison, the fluorescence spectra of compound 2d (2 μM) and rhodamine B acid 3b (2 μM) at pH 2.0 were displayed. Spectra were obtained with excitation at 510 nm in 25 mM PBS aqueous solution (containing 20% DMF as a co-solvent).
Fig. S5. pH-dependence of the absorption spectra of compounds 2a (A), 2b (B), 2c (C), 2d (D) (2 μM) with the arrows indicating the change of absorbance with pH decrease from 7.4 to 2.0.

E) For comparison, the absorption spectra of rhodamine B acid 3b and compounds 2a-d at pH 2.0 were displayed.
Fig. S6. A) pH-dependence of the fluorescence intensity of compound 1a (2 μM) excited at 500 nm with arrows indicating the change of the fluorescence intensities with pH decrease from 7.4 to 2.0. B) For comparison, the fluorescence spectra of rhodamine 6G acid 3a and compound 1a (2 μM) at pH 2.0 were displayed. Spectra were obtained with excitation at 500 nm in 25 mM PBS aqueous solution (containing 20% DMF as a co-solvent).

Fig. S7. A) pH-dependence of the fluorescence intensity of compound 1b (2 μM) excited at 500 nm with arrows indicating the change of the fluorescence intensities with pH decrease from 7.4 to 2.0. B) For comparison, the fluorescence spectra of rhodamine 6G acid 3a and compound 1b (2 μM) at pH 2.0 were displayed. Spectra were obtained with excitation at 500 nm in 25 mM PBS aqueous solution (containing 20% DMF as a co-solvent).
Fig. S8. A) pH-dependence of the fluorescence intensity of compound 1c (2 μM) excited at 500 nm with arrows indicating the change of the fluorescence intensities with pH decrease from 7.4 to 2.0. B) For comparison, the fluorescence spectra of rhodamine 6G acid 3a and compound 1c (2 μM) at pH 2.0 were displayed. Spectra were obtained with excitation at 500 nm in 25 mM PBS aqueous solution (containing 20% DMF as a co-solvent).

Fig. S9. A) pH-dependence of the fluorescence intensity of compound 1d (2 μM) excited at 500 nm with arrows indicating the change of the fluorescence intensities with pH decrease from 7.4 to 2.0. B) For comparison, the fluorescence spectra of rhodamine 6G acid 3a and compound 1d (2 μM) at pH 2.0 were displayed. Spectra were obtained with excitation at 500 nm in 25 mM PBS aqueous solution (containing 20% DMF as a co-solvent).
Fig. S10. pH-dependence of the absorption spectra of compounds 1a (A), 1b (B), 1c (C), 1d (D) (2 μM) with the arrows indicating the change of the absorption intensities with pH decrease from 7.4 to 2.0. E) For comparison, the absorption spectra of rhodamine 6G acid 3a (2 μM) and compounds 1a-d at pH 2.0 were displayed.
Table S1. The fluorescence quantum yields (Φ_f) of compound 1e in different pH conditions. (Φ_f is the relative fluorescence quantum yield estimated by using Rhodamine 6G ($\Phi_f = 0.95$ in water) as a fluorescence standard.4).

<table>
<thead>
<tr>
<th>pH</th>
<th>Φ_f</th>
<th>pH</th>
<th>Φ_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.0</td>
<td>0.006</td>
<td>6.0</td>
<td>0.57</td>
</tr>
<tr>
<td>7.49</td>
<td>0.08</td>
<td>5.5</td>
<td>0.65</td>
</tr>
<tr>
<td>7.04</td>
<td>0.17</td>
<td>5.1</td>
<td>0.78</td>
</tr>
<tr>
<td>6.55</td>
<td>0.38</td>
<td>4.5</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Fig. S11. pH-dependence of the absorption spectra of compound 1e (2 μM) with the arrow indicating the change of the absorbance with pH decrease from 9.0 to 3.0.

Table S2. The fluorescence quantum yields of compound 2e in different pH conditions. (Φ_f is the relative fluorescence quantum yield estimated by using Rhodamine B ($\Phi_f = 0.31$ in water) as a fluorescence standard.4)

<table>
<thead>
<tr>
<th>pH</th>
<th>Φ_f</th>
<th>pH</th>
<th>Φ_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>0.003</td>
<td>6.0</td>
<td>0.12</td>
</tr>
<tr>
<td>7.49</td>
<td>0.004</td>
<td>5.6</td>
<td>0.18</td>
</tr>
<tr>
<td>7.04</td>
<td>0.01</td>
<td>5.1</td>
<td>0.23</td>
</tr>
<tr>
<td>6.55</td>
<td>0.03</td>
<td>4.5</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Fig. S12. (a) pH-dependence of the fluorescence intensity of compound 2e (2 μM) with the arrow indicating the change of the fluorescence intensities with pH decrease from 8.5 to 3.5. Spectra were obtained with excitation at 550 nm in 25 mM PBS aqueous solution (containing 20% DMF as a co-solvent). (b) Fluorescence responses (fluorescence intensity at 586 nm) of compound 2e (2 μM) to different pH (8.5 to 3.5). The inset shows the linear relationship of fluorescence intensity at 556 nm and varying pH values from 4.5 to 6.5.

Fig. S13. pH-dependence of the absorption spectra of compound 2e (2 μM) with the arrow indicating the change of the absorbance with pH decrease from 8.5 to 3.5.
Fig. S14. Fluorescence intensity of compound 1e (2 μM) to biologically relevant species in PBS buffer (containing 20% DMF as a co-solvent, pH 6.5): 1, blank; 2, K⁺ (120 mM); 3, Na⁺ (120 mM); 4, Ca²⁺ (0.5 mM); 5, Mg²⁺ (0.5 mM); 6, Zn²⁺ (0.1 mM); 7, Fe³⁺ (0.1 mM); 8, Cu²⁺ (0.1 mM); 9, Co²⁺ (0.1 mM); 10, Glucose (0.1 mM); 11, Ser (0.1 mM); 12, Cys (0.1 mM); 13, Arg (0.1 mM); 14, Val (0.1 mM); 15, GSH (0.1 mM); 16, vitamin C (0.1 mM); 17, H₂O₂ (0.1 mM). The data were collected with emission at 556 nm and excitation at 500 nm in 25 mM PBS aqueous solution (containing 20% DMF as a co-solvent).

Fig. S15. Fluorescence intensity of compound 2e (2 μM) to biologically relevant species in PBS buffer (containing 20% DMF as a co-solvent, pH 5.6): 1, blank; 2, K⁺ (120 mM); 3, Na⁺ (120 mM); 4, Ca²⁺ (0.5 mM); 5, Mg²⁺ (0.5 mM); 6, Zn²⁺ (0.1 mM); 7, Fe³⁺ (0.1 mM); 8, Cu²⁺ (0.1 mM); 9, Co²⁺ (0.1 mM); 10, Glucose (0.1 mM); 11, Ser (0.1 mM); 12, Cys (0.1 mM); 13, Arg (0.1 mM); 14, Val (0.1 mM); 15, GSH (0.1 mM); 16, vitamin C (0.1 mM); 17, H₂O₂ (0.1 mM). The data were collected with emission at 586 nm and excitation at 550 nm in 25 mM PBS aqueous solution (containing 20% DMF as a co-solvent).
Figure S16. a) Fluorescence intensity of compound 1e at 556 nm after irradiation with light (centered at 500 nm) (0-1800 second) at pH 7.4 (▲), 6.5 (■), and 5.5 (●).
b) Fluorescence intensity of compound 2e at 586 nm after irradiation with light (centered at 550 nm) (0-1800 second) at pH 7.4 (▲), 6.5 (■), and 5.5 (●).

Cytotoxicity assays
Hela cells were grown in the modified Eagle’s medium (MEM) supplemented with 10% FBS (fetal bovine serum) in an atmosphere of 5% CO₂ and 95% air at 37 °C. Immediately before the experiments, the cells were placed in a 96-well plate, followed by addition of increasing concentrations of probe 1e (99% MEM and 1% DMSO). The final concentrations of the probe were kept from 5 μM to 100 μM (n = 3). The cells were then incubated at 37 °C in an atmosphere of 5% CO₂ and 95% air at 37 °C for 24, 48 or 72 h, followed by MTT assays. Untreated assay with MEM (n = 3) was also conducted under the same conditions.
Fig. S17. Cytotoxicity studies of probe 1e (a: 0; b: 5 μM; c: 10 μM; d: 20 μM; e: 50 μM; f: 100 μM) for Hela cells after 24 hours (A), 48 hours (B), and 72 hours (C).
Fig. S18. Hela cells co-incubated with 1e (2 μM) and Hoechst 33258 (4.5 μM) for 30 min in PBS (pH 7.4, containing 2% DMSO as a co-solvent). Before imaging, the cells were washed in PBS medium (pH 6.5) with the addition of nigericin (1 μg/mL) to elicit a rapid exchange of K⁺ for H⁺ for a fast equilibration of external and internal pH.¹⁻³ a) emission from the blue channel (Hoechst 33258, nuclear stain); b) emission from the red channel (1e); c) overlay of the blue and red channels.

References
