Highly Sensitive Water-soluble System to Sense Glucose in Aqueous Solution

Liheng Feng,* Fei Liang,† Yue Wang,‡ Ming Xu,* and Xiaoju Wang*‡

*aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
†Institute of Molecular Science, Chemical Biology and Molecular Engineering, Laboratory of Education Ministry, Shanxi University, Taiyuan, 030006, P.R. China

Electronic Supplementary Information (ESI†)

Fig. S1 Stern-Volmer plot of PP-S-BINOL quenching by o-BBV in the present of glucose (100 mM) 2
Fig. S2 The amplified fluorescence quenching of PP-S-BINOL and o-BBV with the addition of glucose 3
Fig. S3 The colour change of PP-S-BINOL/o-BBV system followed by glucose 50.0 mM 4
Fig. S4 The 1H NMR of 1,4-dibromo-2,5-bis(3-sulfonatopropoxy)benzene 5
Fig. S5 The 13C NMR of 1,4-dibromo-2,5-bis(3-sulfonatopropoxy)benzene 6
Fig. S6 The 1H NMR of (S)-2,2'-dimethoxy-6,6'-bis-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-1,1'-naphthalene 7
Fig. S7 The 13C NMR of (S)-2,2'-dimethoxy-6,6'-bis-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-1,1'-naphthalene 8
Fig. S8 The 1H NMR of PP-S-BINOL 9
Fig. S9 The 13C NMR of PP-S-BINOL 10
Fig. S10 The 1H NMR of o-BBV 11
Fig. S11 The 13C NMR of o-BBV 12
Fig. S1 Stern-Volmer plot of PP-S-BINOL (4.0 × 10^{-6} M) quenching by α-BBV in the present of glucose (100 mM) at pH 7.4. The molarity of PP-S-BINOL was calculated according to the minimum structure unit of polymer.
Fig. S2 The amplified fluorescence quenching of PP-S-BINOL (4.0 × 10\(^{-6}\) M) and \(o\)-BBV (4.0 × 10\(^{-5}\) M) with the addition of glucose in pH 7.4 phosphate buffer solution. The molarity of PP-S-BINOL was calculated according to the minimum structure unit of polymer.
Fig. S3 The colour change of PP-S-BINOL (2.0 ×10^{-4} M) solution by introduction of o-BBV (2.0 ×10^{-4} M) followed by glucose 50.0 mM in pH 7.4 phosphate buffer solution. The solutions were irradiated by λ365 nm UV-Vis light.
Fig. S4 400 MHz 1H NMR of 1,4-dibromo-2,5-bis(3–sulfonatopropoxy)benzene in D$_2$O.
Fig. S5 100 MHz 13C NMR of 1,4-dibromo-2,5-bis(3-sulfonato-propoxy)benzene in D$_2$O.
Fig. S6 400 MHz 1H NMR of (S)-2,2'-dimethoxy-6,6'-bis-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-1,1'-naphthalene in CDCl$_3$.
Fig. S7 100 MHz 13C NMR of (S)-2,2'-dimethoxy-6,6'-bis-(4,4,5,5'-tetramethyl-1,3,2-dioxaborolane)-1,1'-naphthalene in CDCl$_3$.
Fig. S8 400 MHz 1H NMR of PP-S-BINOL in d-DMSO.
Fig. S9: 100 MHz 13C NMR of PP-S-BINOL in d-DMSO.
Fig. S10 400 MHz 1H NMR of o-BBV in CD$_3$OD.
Fig. S11 100 MHz 13C NMR of o-BBV in CD$_3$OD.