Supporting information for

Enantioselective Fluorescent Recognition of Mandelic Acid by Unsymmetrical Salalen and Salen Sensors

Xia Yang, a Xuechao Liu, a Kang Shen, a Yong Fu, a Ming Zhang, a Chengjian Zhu,*, a,c and Yixiang Cheng,*,b

a State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China,
b Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
*c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China,

Email: Cheng-Jian Zhu (cjzhu@nju.edu.cn); Yi-Xiang Cheng (yxcheng@nju.edu.cn)

Table of Contents

1. Concentration effect on the UV-Vis and fluorescence spectra of 1b, 1a, 2b and 2a in toluene (Fig. S1-S6) .. S2-S3
2. Fluorescent titration of 2c with MA in toluene (Fig. S7) .. S4
3. Fluorescence spectra of 2a in Toluene/Methanol solutions (Fig. S8) S4
4. Fluorescent titration of 2a with MA in toluene with 2% (V/V) methanol or in chloroform with 1% (V/V) methanol (Fig. S9-S10) .. S5
5. Fluorescence spectra of 2a and 2c with enantiomers of 7, 8 and 9 (Fig. S11-S13) .. S6
6. 1H NMR and 13C NMR spectra of 4a, 4b, 1b, 1a, 2b, 2a and 2c (Fig. S14-S20) ... S7-S13

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry

This journal is © The Royal Society of Chemistry 2011
Fig. S1 Concentration effect on the UV-Vis spectra of 1b in toluene

Fig. S2 Concentration effect on the fluorescence spectra of 1a in toluene ($\lambda_{ex}=331$ nm)

Fig. S3 Concentration effect on the UV-Vis spectra of 2b in toluene
Fig. S4 Concentration effect on the fluorescence spectra of 2b in toluene ($\lambda_{ex}=331$ nm)

![Fluorescence spectra of 2b in toluene](image)

Fig. S5 Concentration effect on the UV-Vis spectra of 2a in toluene

![UV-Vis spectra of 2a in toluene](image)

Fig. S6 Concentration effect on the fluorescence spectra of 2a in toluene ($\lambda_{ex}=331$ nm)

![Fluorescence spectra of 2a in toluene](image)
Fig. S9 (a) Fluorescence spectra of 2a (1×10^{-6} mol/L in toluene with 2% (V/V) methanol, λ_{ex}= 331 nm) with (S)-MA or (R)-MA (2×10^{-4} mol/L) and (b) the plots of (I/I_0) vs the concentration of MA during the titration of 2a with (S)-MA or (R)-MA (λ_{ex}= 331 nm, λ_{em}= 364 nm)

![Fluorescence spectra](image)

Fig. S10 (a) Fluorescence spectra of 2a (1×10^{-6} mol/L in chloroform with 1% (V/V) methanol, λ_{ex}= 331 nm) with (S)-MA or (R)-MA (1.4×10^{-4} mol/L) and (b) the plots of (I/I_0) vs the concentration of MA during the titration of 2a with (S)-MA or (R)-MA (λ_{ex}= 331 nm, λ_{em}= 364 nm)

![Fluorescence spectra](image)
Fig. S11 Fluorescence spectra of (a) 2a and 2c (1×10^{-6} mol/L in chloroform with 1% (V/V) methanol, λ_{ex} = 331 nm) with (S)-7 or (R)-7 (1.0×10^{-4} mol/L)

Fig. S12 Fluorescence spectra of (a) 2a and 2c (1×10^{-6} mol/L in chloroform with 1% (V/V) methanol, λ_{ex} = 331 nm) with (S)-8 or (R)-8 (1.0×10^{-4} mol/L)

Fig. S13 Fluorescence spectra of (a) 2a and 2c (1×10^{-6} mol/L in chloroform with 1% (V/V) methanol, λ_{ex} = 331 nm) with (S)-9 or (R)-9 (1.0×10^{-4} mol/L)
Fig. S14 1H NMR and 13C NMR spectra of 4a
Fig. S15 1H NMR and 13C NMR spectra of 4b
Fig. S16 1H NMR and 13C NMR spectra of 1b
Fig. S17 1H NMR and 13C NMR spectra of 1a
Fig. S18 1H NMR and 13C NMR spectra of 2b
Fig. S19 1H NMR and 13C NMR spectra of 2a
Fig. S20 1H NMR and 13C NMR spectra of 2c