Electronic Supporting Information (ESI)

Synthesis of Fluorinated Thomsen-Friedenreich Antigens: Direct Deoxyfluorination of αGalNAc-Threonine tert-Butyl Esters

Manuel Johannes,a Thomas Oberbilligb,c and Anja Hoffmann-Röder,*b

aInstitut für Pharmazeutische Wissenschaften, Wolfgang-Pauli-Strasse 10, ETH-Hönggerberg HCI, CH-8093 Zürich, Switzerland.
bInstitut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
cInstitut für Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, D-55129 Mainz, Germany

Contents

General Remarks 2
Scheme 1 2
Compound S1 2
Compound S2 3
Compound S3/S4 3
Compound 13 4
References 4
Spectra for Compound 7 5
Spectra for Compound 8 6
Spectra for Compound 9 8
Spectra for Compound β-11 9
Spectra for Compound 16 11
Spectra for Compound 17 13
Spectra for Compound 18 14
Spectra for Compound β-19 16
General remarks:
Solvents for moisture-sensitive reactions (toluene, MeCN, CH₂Cl₂) were distilled and dried according to standard procedures. Glycosylations were performed in flame-dried glassware under inert argon atmospheres. Reagents were purchased in the highest available commercial quality and used as supplied except where noted. Reactions were monitored by TLC with pre-coated silica gel 60 F254 aluminium plates (Merck KGaA, Darmstadt) using UV light as the visualizing agent and by dipping the plate into a 1:1 mixture of 1 M H₂SO₄ in EtOH and 3% 3-methoxyphenol solution in EtOH followed by heating. Flash column chromatography was performed with silica gel (0.035-0.070 mm, 60 Å) from Acros. RP-HPLC analyses were performed on a JASCO-HPLC system with a Phenomenex Luna C18(2) (250 x 4.6 mm, 5 μm) column at a flow rate of 1 mL/min-1. Mixtures of H₂O/MeCN were used as solvents. ¹H, ¹³C, ¹⁹F, and 2D NMR spectra were recorded on a Bruker AC-300 or a Bruker AM-400 spectrometer. The chemical shifts are reported in ppm relative to the signal of the deuterated solvent. Multiplicities are given as: s (singlet), br s (broad singlet), d (doublet), t (triplet), and m (multiplet). FD-mass spectra were recorded on a Finnigan MAT-95 spectrometer. Optical rotations were measured at 546 nm and 578 nm with a Perkin-Elmer polarimeter 241.

Scheme 1: Synthesis of 3,4-Di-O-acetyl-6-deoxy-6,6-difluoro-D-galactal (13).

1,2:3,4-Di-O-isopropylidene-α-D-galacto-hexodialdo-1,5-pyranose (S1): To a solution of oxalyl chloride (8.71 mL, 0.102 mmol) in anhyd. THF (10 mL) and anhyd. CH₂Cl₂ (10 mL) was added dimethylsulfoxide (14.43 mL, 0.203 mmol) at -60 °C. A solution of 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (12) (11.2 g, 0.423 mmol) in anhyd. CH₂Cl₂ (10 mL) was slowly added over 5 min and the mixture was stirred at -60 °C for 10 min. Then, NEt₃ (56.90 mL, 0.406 mmol) was added over a period of 15 min and the resulting suspension was stirred for 30 min at -60 °C and slowly warmed to room temperature. After addition of water (50 mL) and extraction with CH₂Cl₂ (2 × 50 mL), the organic layer was dried with Na₂SO₄,
filtered, and concentrated in vacuo. Flash chromatography on silica gel (Hex/EtOAc, 7:3) provided S1 as a yellow oil (8.62 g, 0.334 mmol, 79%); Rf = 0.33 (Hex/EtOAc, 7:3); 1H-NMR (400 MHz, CDCl3): δ = 9.57 (s, 1H, 6-H), 5.63 (d, 1H, J = 4.9, 1-H), 4.63-4.53 (m, 2H, 3-H, 4-H) 4.34 (dd, 1H, J = 2.5/4.9, 2-H), 4.15 (d, 1H, J = 2.1, 5-H), 1.46, 1.39, 1.30, 1.27 (4s, 12H, CH3).

6-Deoxy-6,6-difluoro-1,2,3,4-di-O-isopropylidene-α-D-galactopyranose (S2): DAST (0.85 mL, 6.91 mmol) was slowly added to a solution of aldehyde S1 (0.81 g, 3.14 mmol) in anhyd. CH2Cl2 (25 mL) at 0 °C. The reaction mixture was warmed to room temperature, stirred for 12 h and quenched by addition of MeOH (5 mL). The solution was washed with sat. aq NaHCO3 (2 × 50 mL), dried (MgSO4), and concentrated in vacuo. Flash chromatography on silica gel (Hex/EtOAc, 7:3) afforded S2 as a yellowish amorphous solid (1.40 g, 5.00 mmol, 67%); Rf = 0.59 (Hex/EtOAc, 3:1); 1H NMR (400 MHz, CDCl3): δ = 5.81 (dt, 1H, J = 6.6/53.8, 6-H), 5.53 (dd, 1H, J = 2.0/4.9, 1-H), 4.62 (dt, 2H, J = 2.5/8.0, 3-H) 4.37-4.31 (m, 2H, 2-H, 4-H), 3.92-3.83 (m, 1H, 5-H), 1.52, 1.44, 1.33, 1.32 (4s, 12H, CH3); 19F NMR (376.5 MHz, CDCl3), δ = -131.0 (ddd, J = 11.6/58.3/298.3, 6aF), -129.2 (dddd, J = 2.1/3.9/54.0/298.3, 6bF).

6-Deoxy-6,6-difluoro-1,2,3,4-tetra-O-acetyl-α-D-galactopyranosyl bromide (S4): A solution of difluoride S2 (1.36 g, 4.87 mmol) in acetic acid (80%, 30 mL) was refluxed for 18 h. The solvent was removed in vacuo, the residue was co-evaporated with toluene (4 × 30 mL), and dissolved in pyridine (20 mL). After addition of Ac2O (4.57 mL, 48.65 mmol), the reaction mixture was stirred at room temperature for 12 h and concentrated in vacuo. The residue was co-evaporated with toluene (4 × 50 mL) and purified by flash chromatography on silica gel (Hex/EtOAc, 7:3) to provide 6-Deoxy-6,6-difluoro-1,2,3,4-tetra-O-acetyl-α/β-D-galactopyranose (S3) as a yellow oil (1.70 g, 4.72 mmol, 97%). Peracetylated difluoride S3 (5.46 g, 15.16 mmol), dissolved in anhyd. CH2Cl2 (50 mL), was treated dropwise with HBr in glacial acetic acid (33%, 10.47 mL, 60.93 mmol) at 0 °C. After warming to room temperature, the reaction mixture was stirred for 3 d, poured on ice/water (300 mL) and neutralized at 0 °C with solid NaHCO3. The aq phase was extracted with CH2Cl2 (3 × 50 mL), the combined organic phases were washed with sat. aq NaHCO3 (2 × 50 mL), dried (MgSO4) and concentrated in vacuo. Purification by flash chromatography on silica gel (Hex/EtOAc, 2:1) afforded S4 as a yellowish amorphous solid (3.01 g, 7.74 mmol, 51%); Rf = 0.55 (Hex/EtOAc, 2:1); analytical RP-HPLC (Luna, H2O/MeCN, 80:20 (5 min) → 30:70 (35 min).
3,4-Di-O-acetyl-6-deoxy-6,6-difluoro-D-galactal (13): To a suspension of activated zinc powder (3.66 g, 55.93 mmol; activated by successive washings with 1M HCl, water, EtOAc and Et₂O) in EtOAc (70 mL) was added N-methylimidazole (0.53 mL, 6.71 mmol). The reaction mixture was heated under reflux and a solution of galactosyl bromide S₄ (2.18 g, 5.59 mmol) in EtOAc (10 mL) was slowly added. After refluxing for two additional hours, the reaction mixture was cooled to room temperature, filtered through Hyflo Supercel, and the filtrate was washed with 1M HCl (2 × 40 mL), sat. aq NaHCO₃ (2 × 40 mL), dried (MgSO₄), and concentrated in vacuo. Purification by flash chromatography on silica gel (Hex/EtOAc, 2:1) afforded 13 as a yellowish amorphous solid (1.22 g, 4.88 mmol, 87%); R_f = 0.46 (Hex/EtOAc, 2:1); analytical RP-HPLC (Luna, H₂O/MeCN, 80:20 (5 min) → 30:70 (35 min) → 0:100 (20 min) → 0:100 (10 min): R_t = 16.8 min; [α]_D^[23] = -39.0 (c = 1.00, CHCl₃); ^1H NMR (400 MHz, CDCl₃, COSY), δ = 6.50 (d, 1H, J = 6.3, 1-H), 5.62-5.47 (m, 2H, 3-H), 4.75 (dt, 1H, J = 2.0/6.3, 2-H), 4.20 (dd, 1H, J = 7.6/14.2, 5-H), 2.14, 2.03 (2s, 6H, CH₃); ^13C NMR (75 MHz, CDCl₃), δ = 169.8 (C=O), 112.7 (t, J = 243.8, C6), 73.8 (t, J = 27.2, C5), 63.5 (C3), 62.0 (d, J = 4.2, C4), 20.7, 20.6 (2 × CH₃-Ac); ^19F NMR (376.5 MHz, CDCl₃), δ = -129.6 (d, J = 55.1); FD-MS: m/z: 251.29 ([M+H]^+).

1H NMR of compound 7

RP-HPLC of compound 7
^1H NMR of compound 8

^13C NMR of compound 8
19F NMR of compound 8 (+ rotamer)
\(^1\)H NMR of compound 9

![NMR spectrum of compound 9 with chemical shifts and peaks labeled]

\(^{13}\)C NMR of compound 9

![NMR spectrum of compound 9 with chemical shifts and peaks labeled]
19F NMR of compound 9

1H NMR of compound β-11
13C NMR of compound β-11

19F NMR of compound β-11 (+ rotamer)
RP-HPLC of compound β-11 (+ rotamer)

1H NMR of compound 16
13C NMR of compound 16

19F NMR of compound 16
RP-HPLC of compound 16

\[\text{[Graph of RP-HPLC data]} \]

\[\text{Min} \]

\[\text{mAU} \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \]

\[0 \quad 50 \quad 100 \quad 150 \quad 200 \quad 250 \quad 300 \quad 350 \quad 400 \quad 450 \quad 500 \quad 550 \quad 600 \quad 650 \quad 700 \quad 750 \quad 800 \quad 850 \quad 900 \quad 950 \]

\[0 \quad -50 \quad -100 \quad -150 \]

\[\text{[Chemical structure of compound 16]} \]

\[\text{[Graph of } ^1H \text{ NMR data]} \]

\[\text{[Chemical structure of compound 17]} \]

\[\text{[Graph of } ^1H \text{ NMR data]} \]

\[\text{[Chemical structure of compound 17]} \]

\[\text{[Graph of } ^1H \text{ NMR data]} \]

\[\text{[Chemical structure of compound 17]} \]
13C NMR of compound 17

1H NMR of compound 18
13C NMR of compound 18

19F NMR of compound 18
\[^1\text{H} \text{NMR of compound } \beta-19\]

\[^{13}\text{C} \text{NMR of compound } \beta-19\]
19F NMR of compound β-19

RP-HPLC of compound β-19 (+ rotamer)