Supplementary information

Effect of ester chemical structure and peptide bond conformation in

fragmentation pathways of differently metal cationized

cyclodepsipeptides

Raja Banerjee^{1,2*}, S. Sudarslal^{1#}, R. S. Ranganayaki¹ & S. Raghothama³

¹Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India), ²Dept of Bioinformatics, West Bengal University of Technology, BF-142, Salt Lake, Kolkata 700064 (India), ³ NMR Research Centre, Indian Institute of Science, Bangalore 560 012, India

*Email: ban_raja@yahoo.com; banraja10@gmail.com

Short title: MSⁿ analysis of metal ion added cyclodepsipeptide

Scheme S1: Schematic representation of plausible mechanism for (A) generation of bions in presence of alkali metal ions (e.g. Li^+ , Na^+) and (B) generation of y-ions in presence of H^+ and Ag^+ from isaridin molecules

Table S1

a) Formation of product ions (m/z) from protonated and several metal-ion adducts of isariin-II (MW 567.4 Da) and isariin-III (MW 567.3 Da) during MSⁿ experiments along with the assigned partial sequence information obtained from fragmentation study

Metal	MS	MS^2	MS ³	MS^4	MS ⁵	MS ⁶	Partial
ions	(m/z)	(m/z)	(m/z)	(m/z)	(m/z)	(m/z)	sequence
Isariin-II							
H^{+}	568.5	469.2	398.1	284.9			LAV
							(b-ions)
Na ⁺	590.4	491.1	307.0				LAV
							(b-ions)
\mathbf{K}^+	606.4	507.3	436.2	322.9			LAV
							(b-ions)
Li ⁺	574.4	475.2	404.2	291.0	191.9		VLAV
							(b-ions)
Ag^+	676.3	577.0	506.1	392.8	293.9	236.8	GVLAV
							(b-ions)
Isariin-III							
H^+	568.5	497.1	426.0	313.1	213.9		VLAA
							(b-ions)
Na ⁺	590.2	519.2	448.1	335.0	235.9		VLAA
							(b-ions)
\mathbf{K}^+	606.4	535.1	464.2	351.0			LAV
							(b-ions)
Li ⁺	574.3	503.2	432.1	319.0	219.8		VLAA
							(b-ions)
Ag^+	676.4	605.1	534.0	420.9			VLAA
							(b-ions)

Continued...

b) Formation of product ions (m/z) from protonated and several metal-ion adducts of
isaridin-I (MW 655.4 Da) and isaridin-III (717.5 Da) during MS ⁿ experiments along
with the assigned partial sequence information obtained from fragmentation study

Metal ions	MS	MS^2	MS^3	MS^4	MS ⁵	MS ⁶	Partial sequence
	(m/z)	(m/z)	(m/z)	(m/z)	(m/z)	(m/z)	
Isaridin-I							
H^+	656.4	543.2	430.1	359.1	244.9		<u>V-V</u> -βG-αHyL
							(y-ions)*
	656.4		472.2	359.1	211.9		F- <u>V</u> - <u>V</u> -βG
							(b-ions)
Na ⁺	678.5	606.7		381.1	233.9		F- <u>V</u> - <u>V</u> -βG
							(b-ions)*
	678.5	547.2	434.2	363.1			<u>V-V</u> -βG
		(-H ₂ O)					(y-ions)
\mathbf{K}^+	694.5	563.1					<u>V</u> - <u>V</u> -βG
		(581-					(y-ions)
		$H_2O)$					[from MS ²]
Li ⁺	662.4	590.2	478.2	365.0	217.9		F- <u>V</u> - <u>V</u> -βG
							(b-ions)
Ag^+	762.3	649.1	536.0	465.1	350.9		<u>V-V-</u> β G- α HyL
-	(764.3)						(y-ions)
							-
Isaridin-							
III							
H^{+}	718.4	605.3	444.2	373.1			<u>V-F</u> -βG
							(y-ions)*
	718.4		486.2	373.1			<u>VF</u> βG
							(b-ions)
Na ⁺	740.5	627.3	466.2	395.1			<u>VF</u> βG
							(y-ions)
	740.5	651.3	508.2	395.1	248.0		F <u>VF</u> βG
							(b-ions)*
\mathbf{K}^+	756.4	643.2	482.1	410.9			<u>V-F</u> -βG
							(y-ions)
	756.4	524.2	411.1				<u>V-F</u> -βG
							(b-ions)
Li ⁺	724.4	635.2	492.2	379.0	231.9		F- <u>V</u> - <u>F</u> -βG
		(653.2-	(474.2)				(b-ions))
		$H_2O)$					
Ag^+	826.2	713.2	534.1	463.0	349.0		\underline{V} - \underline{F} - β G- α HyL
	(824.2)		(552.1-				(y-ions)
			$H_2O)$				

(* indicated more intense peaks in case of mixed b and y -ions)

Figure S1. Presentation of MS^2 data of β -hydroxyacid containing peptide isariin-II (molecular mass 567.4) as a) protonated species, b) Li^+ adduct and c) Ag^+ adduct

Figure S2. Presentation of MS^2 data of α -hydroxyacid containing peptide isaridin-I (molecular mass 655.4) as a) protonated species, b) Li^+ adduct and c) Ag^+ adduct

Figure S3: 1D ¹H-NMR spectra of free and metal ion (Ag⁺ and Li⁺) complexes of A) isariin-I and B) isaridin-II, recorded on a Bruker AV 700 system attached with a cryo probe

Figure S4. 2D NMR data of free and metal ion adduct of β -hydroxy acid containing peptide isariin-I (Molecular Mass 595.4): Panel A: ¹H-¹³C HSQC and Panel B: ¹H-¹⁵N HSQC. Top row: Free isariin-I, Middle row: isariin-I+ AgClO₄, Bottom row: isariin-I + LiClO₄.

Figure S5. 2D NMR data of free and metal ion adduct of α -hydroxy acid containing peptide isaridin-II (Molecular Mass 703.4): Panel A: ¹H-¹³C HSQC and Panel B: ¹H-¹⁵N HSQC. Top row: Free isaridin-II, Middle row: isaridin-II+ AgClO₄, Bottom row: isaridin-II + LiClO₄.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2011

Figure S6. Change in Chemical shift of ⁷Li upon successive addition of isaridin-II molecule (molecular mass 703.4) in CD_3CN solution using LiCl in H_2O as external reference