Recyclable Heterogeneous Copper Oxide on Alumina Catalyzed Coupling of Phenols and Alcohols with Aryl halides under Ligand Free Conditions

Kokkirala Swapna, a Sabbavarapu Narayana Murthy, a Mocharla Tarani Jyothi a and Yadavalli Venkata Durga Nageswar a

a Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad 500607, India. Tel: +91-40-27191654, Fax: +91-40-27160512.

E-mail: dryvdnageswar@gmail.com
Contents

Representative Experimental Procedure for the Synthesis of Diaryl Ethers by Using Heterogeneous CuO on alumina as a Catalyst...3

Copies of 1H NMR and 13C NMR of Compounds..............4
Representative Experimental Procedure for the Synthesis of Diaryl Ether by Using CuO on alumina as a Catalyst: To a stirred solution of iodo benzene (1a) (1.0 mmol) and phenol (2a) (1.0 mmol) in dry DMSO (2.0 ml) were added CuO on alumina catalyst (13%, 120 mg) and KOH (2.0 equiv) and the reaction mixture was heated at 100 °C under nitrogen atmosphere for 18 h, The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was extracted with ethyl acetate (3x10 ml). The combined organic layers were dried with anhydrous Na₂SO₄. The solvent was evaporated under vacuum to give the crude product, which was purified by column chromatography with hexane as eluent to yield the expected product 3a (166 mg, 98%) as yellowish oil. The purity of the product was confirmed by ¹H, ¹³C and Mass, IR spectroscopy.
Copies of 1H NMR and 13C NMR of Compounds
(entry 2, Table 2)
(entry 2, Table 2)
(entry 3, Table 2)
O
MeO

(entry 3, Table 2)
(entry 4, Table 2)
Me
Me
Me

(entry 5, Table 2)
(entry 5, Table 2)
(entry 6, Table 2)
Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is (c) The Royal Society of Chemistry 2011

Me

O

Me

(entry 6, Table 2)
(entry 7, Table 2)
Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is (c) The Royal Society of Chemistry 2011

(entry 8, Table 2)
(entry 8, Table 2)
(entry 9, Table 2)
(entry 9, Table 2)

(entry 10, Table 2)
(entry 10, Table 2)
(entry 11, Table 2)
(entry 11, Table 2)
(entry 12, Table 2)
(entry 12, Table 2)
(entry 13, Table 2)
(entry 13, Table 2)
(entry 14, Table 2)
(entry 15, Table 2)
(entry 16, Table 2)
(entry 17, Table 2)
(entry 17, Table 2)
(entry 18, Table 2)
(entry 18, Table 2)
(entry 19, Table 2)
(entry 19, Table 2)
(entry 20, Table 2)
\[\text{entry 20, Table 2} \]
(entry 21, Table 2)
(entry 21, Table 2)
(entry 8, Table 3)
(entry 8, Table 3)