Electronic Supplementary Information: Pyrazole analogues of porphyrins and oxophlorins

Alexandra M. Young, Amber L. Von Ruden and Timothy D. Lash,
Department of Chemistry, Illinois State University, Normal, Illinois 61790-6160, U.S.A.
Figure 1. UV-vis spectra of pyrazoloporphyrin 25a in 1% Et₃N-chloroform (top spectrum) and 1% TFA-chloroform (bottom spectrum).
Figure 2. UV-vis spectrum of pyrazoloporphyrin 25a in 0.5% Et$_3$N-chloroform.

Figure 3. UV-vis spectra of pyrazoloporphyrin 25a in chloroform with 0 equiv (red line), 1 equiv (orange line), 2 equiv (green line), 3 equiv (blue line) and 5 equiv (purple line) showing the formation of a monoprotonated species.
Figure 4. UV-vis spectrum of pyrazoloporphyrin monocation $25aH^+$ in 1% Et$_3$N-chloroform (top spectrum) and 1% TFA-chloroform (bottom spectrum).
Figure S5. UV-visible spectra of methyl pyrazoloporphyrin $91b$ in 1% triethylamine-chloroform (blue line) and 5% TFA-chloroform (green line).
Figure 6. UV-vis spectrum of pyrazoloporphyrin 25c in 1% Et$_3$N-chloroform.

Figure 7. UV-vis spectra of pyrazoloporphyrin 25c with 20 equiv TFA in chloroform.
Figure 8. UV-vis spectra of pyrazoloporphyrin 25c in 0.5% Et$_3$N-chloroform (red line), chloroform (orange line), 1 equiv TFA in chloroform (green line), 2 equiv TFA in chloroform (blue line) and 5 equiv TFA in chloroform. The chloroform was deacidified by running it through basic alumina, but the chloroform spectrum still shows a small degree of protonation.
Figure 9. UV-visible spectra of ethyl pyrazoloporphyrin 25c in 1% triethylamine-chloroform (blue line) and 5% TFA-chloroform (red line).
Figure 10. UV-vis spectra of nickel(II) pyrazolophyrin 31a in chloroform (green line) and 1% TFA-chloroform (blue line).
Figure 11. UV-vis spectra of palladium(II) pyrazoloporphyrin 32a in chloroform (blue line) and 1% TFA-chloroform (green line).
Figure 12. UV-vis spectra of nickel(II) pyrazoloporphyrin 31b in chloroform (green line) and 1% TFA-chloroform (blue line).
Figure 13. UV-vis spectra of palladium(II) pyrazoloporphyrin 32b in chloroform (blue line) and 1% TFA-chloroform (green line).
Figure 14. UV-vis spectra of nickel(II) pyrazoloporphyrin 31c in chloroform (blue line) and with 500 equiv TFA in chloroform (green line).
Figure 15. UV-vis spectra of palladium(II) pyrazoloporphyrin 32c in chloroform (blue line) and with 500 equiv TFA in chloroform (blue line).
Figure 16. UV-vis spectra of oxophlorin analogue $28a$ in 1% Et$_3$N-chloroform (blue line) and 1% TFA-chloroform (red line).

Figure 17. UV-vis spectra of oxophlorin analogue $28a$ in 1% TFA-chloroform (red line), 5% TFA chloroform (green line) and 10% TFA-chloroform (blue line).
Figure 18. UV-vis spectra of oxophlorin analogue 28a in chloroform with 2 equiv (red line), 5 equiv (green line) and 10 equiv of TFA in chloroform (blue line).
Figure 19. UV-vis spectrum of oxophlorin analogue 28b in 0.5% Et₃N-chloroform.

Figure 20. UV-vis spectra of oxophlorin analogue 28b in 0.5% TEA-chloroform (red line), chloroform (orange line), 1 equiv TFA in chloroform (green line), 2 equiv TFA in chloroform (blue line) and 5 equiv TFA in chloroform (purple line).
Figure 21. UV-vis spectra of pyrazoloporphyrin 28b in 1% TFA-chloroform (blue line) and 5% TFA-chloroform (red line).
Figure 22. UV-vis spectra of oxophlorin analogue 28a in 1% Et₃N-chloroform (blue line) and 1% TFA-chloroform (red line).
Figure 23. UV-vis spectra of oxophlorin analogue 28c in chloroform and with 2-50 equiv TFA in chloroform.

Figure 24. UV-vis spectra of pyrazoloporphyrin 25a in chloroform, 50 equiv TFA in chloroform, 5% TFA-chloroform and 10% TFA-chloroform.
Figure 25. UV-vis spectrum of oxophlorin analogue 29 in chloroform.
Figure 26. 500 MHz proton NMR, DEPT-135 and 125 MHz carbon-13 NMR spectra of N-ethylpyrazole dimethyl ester 22.
Figure 27. 500 MHz Proton NMR spectrum of 1-ethyl-3,5-bis(hydroxymethyl)pyrazole in CDCl₃.

Figure 28. 125 MHz carbon-13 NMR spectrum of 1-ethyl-3,5-bis(hydroxymethyl)pyrazole in CDCl₃.
Figure 29. 500 MHz proton NMR, DEPT-135 and 125 MHz carbon-13 NMR spectra of \(N\)-ethylpyrazole dialdehyde 20c.
Figure 30. HSQC NMR spectrum of 1-ethylpyrazole-3,5-dicarbaldehyde in CDCl₃.
Figure 31. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of pyrazoloporphyrin 25b in CDCl₃.
Figure 32. 1H-1H COSY NMR spectrum of pyrazoloporphyrin 25b in CDCl$_3$.
Figure 33. HSQC NMR spectrum of pyrazoloporphyrin 25b in CDCl₃.
Figure 34. Selected nOe difference proton NMR spectra for pyrazoloporphyrin 25b in CDCl₃.
Figure 35. NOE correlations and partial proton NMR assignments for pyrazoloporphyrin 25b.
Figure 36. 500 MHz proton NMR spectrum of pyrazoloporphyrin 25b in trace TFA-CDCl₃.

Figure 37. 500 MHz proton NMR spectrum of pyrazoloporphyrin 25b in TFA-CDCl₃.
Figure 38. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of nickel(II) pyrazoloporphyrin $31b$ in CDCl$_3$.

Electronic Supplementary Material (ESI) for Organic and Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2011
Figure 39. 500 MHz proton NMR spectrum of nickel(II) pyrazoloporphyrin 31b in TFA-CDCl₃.
Figure 40. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of palladium(II) pyrazoloporphyrin 31b in CDCl₃.
Figure 41. 500 MHz proton NMR spectrum of palladium(II) pyrazoloporphyrin 31b in TFA-CDCl₃.
Figure 42. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of oxophlorin analogue 28b in CDCl₃.
Figure 43. 500 MHz proton NMR spectrum of oxophlorin 28b in trace TFA-CDCl₃.

Figure 44. 500 MHz proton NMR spectrum of 28b in TFA-CDCl₃.
Figure 45. Selected nOe difference proton NMR spectra of \(N \)-methylpyrazole oxophlorin 28b in CDCl\(_3\).
Figure 46. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of pyrazoloporphyrin \textit{25c} in trace CDCl$_3$.
Figure 47. Partial 500 MHz proton NMR spectra of pyrazoloporphyrins 25b and 25c in CDCl₃.
Figure 48. 500 MHz proton NMR spectrum of pyrazoloporphyrin 25c in trace TFA-CDCl₃.
Figure 49. Partial 500 MHz proton NMR spectra of pyrazoloporphyrins 25b and 25c in TFA-CDCl$_3$.
Figure 50. 500 MHz proton NMR and carbon-13 NMR spectra of nickel(II) pyrazoloporphyrin 31c in CDCl₃.
Figure 51. 500 MHz proton NMR spectrum of nickel(II) pyrazoloporphyrin 31c in TFA-CDCl₃.
Figure 52. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of palladium(II) pyrazoloporphyrin 32c in CDCl₃.
Figure 53. 500 MHz proton NMR spectrum of palladium(II) pyrazoloporphyrin 32c in TFA-CDCl₃.
Figure 54. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of pyrazolo-oxophlorin 28c in CDCl₃.
Figure 55. Partial 500 MHz proton NMR spectrum of oxophlorin analogue 28c in CDCl$_3$ showing details of the downfield region.
Figure 56. 1H-1H COSY NMR spectrum of 28c in CDCl$_3$.
Figure 57. HSQC NMR spectrum of pyrazolo-oxophlorin 28c in CDCl₃.
Figure 58. Selected nOe difference proton NMR spectra of oxophlorin analogue 28c in CDCl₃.
Figure 59. 500 MHz proton NMR spectrum of 28c in trace TFA-CDCl₃.

Figure 60. 500 MHz proton NMR spectrum of 28c in TFA-CDCl₃.
Figure 61. Selected nOe difference proton NMR spectra of 29 in CDCl₃.
Figure 62. Further nOe difference proton NMR spectra, nOe correlations and partial proton NMR assignments for pyrazolo-oxophlorin 29 in CDCl₃.
Figure 63. 1H-1H COSY NMR spectrum of pyrazolo-oxophlorin 29 in CDCl$_3$.
Figure 64. 400 MHz proton NMR spectrum of pyrazolophlorin 24a in CDCl₃.

Figure 65. 100 MHz proton NMR spectrum of pyrazolophlorin 24a in CDCl₃.
Figure 66. 1H-1H COSY NMR spectrum of pyrazolophlorin 24a in CDCl$_3$.
Figure 67. Selected nOe difference proton NMR spectra of pyrazolophlorin 24a in CDCl₃.
Figure 68. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of pyrazoloporphyrin 25a in CDCl₃.
Figure 69. 500 MHz proton NMR spectrum of pyrazoloporphyrin 25b in CDCl$_3$.
Figure 70. HSQC NMR spectrum of pyrazoloporphyrin 25a in CDCl₃.
Figure 71. Selected nOe difference proton NMR spectra of pyrazoloporphyrin 25a in CDCl$_3$.
Figure 72. NOE correlations and partial proton NMR assignments for pyrazoloporphyrin 25a in CDCl₃.
Figure 73. 500 MHz proton NMR spectrum of pyrazoloporphyrin 25a in TFA-CDCl₃.
Figure 74. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of nickel(II) pyrazoloporphyrin 31a in CDCl₃.
Figure 75. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of nickel(II) pyrazoloporphyrin 31a in TFA-CDCl₃.
Figure 76. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of palladium(II) pyrazoloporphyrin 32a in CDCl₃.
Figure 77. 500 MHz proton NMR spectrum of palladium(II) pyrazoloporphyrin 32a in TFA-CDCl₃.
Figure 78. 500 MHz proton NMR and 125 MHz carbon-13 NMR spectra of oxophlorin analogue 28a in CDCl₃.
Figure 79. 500 MHz proton NMR spectrum of 28a in trace TFA-CDCl₃.

Figure 80. 500 MHz proton NMR spectrum of 28a in TFA-CDCl₃.
Figure 81. 1H-1H COSY NMR spectrum of pyrazolo-oxophlorin 28a in CDCl$_3$.
Figure 82. Selected nOe difference proton NMR spectra of 28a in CDCl₃.
Figure 83. Further nOe difference proton NMR spectra, nOe correlations, and partial proton NMR assignments for pyrazolo-oxophlorin 28a in CDCl₃.
Figure 84. FAB MS of 2-phenyl phlorin analogue 24a.
Figure 85. ESI MS of 2-methyl pyrazoloporphyrin 25b.
Figure 86. ESI MS of 2-ethyl pyrazoloporphyrin 25c.
Figure 87. EI MS of 2-phenyl pyrazoloporphyrin 25a.
Figure 88. EI MS of nickel(II) pyrazoloporphyrin \textbf{31b}. The peak at 446 is due to pump oil.
Figure 89. EI MS of palladium(II) pyrazoloporphyrin 32b. The peak at 446 is due to pump oil.
Figure 90. EI MS of nickel(II) pyrazoloporphyrin 31c.
Figure 91. EI MS of palladium(II) pyrazoloporphyrin 32c.
Figure 92. EI MS of nickel(II) 2-phenylpyrazoloporphyrin **31a**. The peak at 446 is due to pump oil.
Figure 93. ESI MS of palladium(II) 2-phenylpyrazoloporphyrin 32a. The peak at 446 is due to pump oil.
Figure 94. ESI MS of oxophlorin analogue 28b.
Figure 95. ESI MS of 2-ethyl pyrazolo-oxophlorin 28c.
Figure 96. ESI MS of 2-phenyl pyrazolo-oxophlorin 28a.
Figure 97. EI MS of the minor 2-ethyl pyrazolo-oxophlorin isomer 29.