Selectivity in Reduction of Natural Furanoheliangolides with Stryker’s Reagent

Daiane Cristina Sassa, Vladimir Constantino Gomes Helenob, Gustavo Oliveira Moraisb, João Luis Callegari Lopesc, Norberto Peporine. Lopesc, Mauricio Gomes Constantinoa*

aDepartamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida dos Bandeirantes, 3900, 14040-901, Ribeirão Preto - SP, Brazil

bNúcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201, 14404-600, Franca – SP, Brazil

cDepartamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, 14040-903, Ribeirão Preto – SP, Brazil.

* mgconsta@usp.br

Table of contents

General Information --S2

1H NMR, 13C NMR, gCOSY, gHMQC and gHMBC spectra for all compounds----- S3-S60

gNOESY spectra of compounds 11, 12, 14 and 16 ----------------------S32, S38, S49 and S60

* Corresponding author. Tel.: (+55)-16-3602-3747; fax: (+55)-16-3602-4838; e-mail: * mgconsta@usp.br.
General Information

The NMR spectra were recorded using a Bruker DPX-500 instrument (500 MHz 1H NMR and 125 MHz 13C NMR); CDCl$_3$ and mixtures of CDCl$_3$ and DMSO-d$_6$ were used as solvent with TMS as internal standard. IR spectra were measured with a Perkin-Elmer Spectrum RX IFTIR System. High resolution mass spectra (HRMS) were obtained on an ESI-TOF Mass Spectrometer.
Acquisition Time (sec)	6.7633
Comment | Imported from UXNMR.
Frequency (MHz) | 500.13
Nucleus | 1H
Number of Transients | 16
Pulse Sequence | zg30
Solvent | CHLOROFORM-D
Temperature (degree C) | 27.000
Original Points Count | 32768
Points Count | 32768
Sweep Width (Hz) | 4844.96

$\text{H NMR (500 MHz) in CDCl}_3$ of compound 1.
13C {1H} (Carbon Totally Decoupled of Hydrogen)

13C (DEPT-135) (Distortionless Enhancement by Polarization Transfer)

13C NMR (125 MHz) in CDCl$_3$ of compound 1
gCOSY – Compound 1
S8

1H NMR (500 MHz) in CDCl3 of compound 7.
13C (DEPT-135) (Distortionless Enhancement by Polarization Transfer)

13C NMR (125 MHz) in CDCl$_3$ of compound 7.
1H NMR (500 MHz) in CDCl$_3$ of compound 3.
13C (DEPT-135) (Distortionless Enhancement by Polarization Transfer)

13C NMR (125 MHz) in CDCl$_3$ of compound 3
gHMBC - Compound 3
1H NMR (500 MHz) in CDCl$_3$ of compound 10.
13C (DEPT-135) (Distortionless Enhancement by Polarization Transfer)

13C NMR (125 MHz) in CDCl$_3$ of compound 10.
gCOSY – Compound 10
Acquisition Time (sec) 4.1288
Comment Imported from UXNMR.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
<td>500.13</td>
</tr>
<tr>
<td>Nucleus</td>
<td>1H</td>
</tr>
<tr>
<td>Number of Transients</td>
<td>32</td>
</tr>
<tr>
<td>Original Points Count</td>
<td>32768</td>
</tr>
<tr>
<td>Points Count</td>
<td>32768</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zg30</td>
</tr>
<tr>
<td>Solvent</td>
<td>CHLOROFORM-D</td>
</tr>
<tr>
<td>Sweep Width (Hz)</td>
<td>7936.51</td>
</tr>
<tr>
<td>Temperature (degree C)</td>
<td>27.000</td>
</tr>
</tbody>
</table>

1H NMR (500 MHz) in CDCl₃ of compound 2.
gCOSY – Compound 2
gHMBC – Compound 2
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Time (sec)</td>
<td>3.9059</td>
</tr>
<tr>
<td>Frequency (MHz)</td>
<td>500.13</td>
</tr>
<tr>
<td>Nucleus</td>
<td>1H</td>
</tr>
<tr>
<td>Number of Transients</td>
<td>16</td>
</tr>
<tr>
<td>Original Points Count</td>
<td>32768</td>
</tr>
<tr>
<td>Points Count</td>
<td>32768</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zg30</td>
</tr>
<tr>
<td>Sweep Width (Hz)</td>
<td>6389.26</td>
</tr>
<tr>
<td>Solvent</td>
<td>CHLOROFORM-D</td>
</tr>
<tr>
<td>Temperature (degree C)</td>
<td>27.000</td>
</tr>
</tbody>
</table>

\[\text{^1H NMR (500 MHz) in CDCl}_3 \text{ with 10\% DMSO-d}_6 \text{ of compound 11.} \]
13C {1H} (Carbon Totally Decoupled of Hydrogen)

13C (DEPT-135) (Distortionless Enhancement by Polarization Transfer)

13C NMR (125 MHz) in CDCl$_3$ with 10% DMSO-d$_6$ of compound 11.
gHMQC – Compound 11
gNOESY – Compound 11
1H NMR (500 MHz) in CDCl₃ of compound 12.
13C NMR (125 MHz) in CDCl$_3$ of compound 12.
gCOSY – Compound 12
gNOESY – Compound 12 in C$_6$D$_6$
1H NMR (500 MHz) in CDCl₃ of compound 13.
13C {1H} (Carbon Totally Decoupled of Hydrogen)

13C (DEPT-135) (Distortionless Enhancement by Polarization Transfer)

13C NMR (125 MHz) in CDCl$_3$ of compound 13.
gHMBC – Compound 13
1H NMR (500 MHz) in CDCl\textsubscript{3} of compound 14.
13C \{1H\} (Carbon Totally Decoupled of Hydrogen)

13C (DEPT-135) (Distortionless Enhancement by Polarization Transfer)

13C NMR (125 MHz) in CDCl$_3$ of compound 14.
gCOSY – Compound 14
gHMQC – Compound 14
gNOESY – Compound 14
1H NMR (500 MHz) in CDCl$_3$ of compound 15.
13C NMR (125 MHz) in CDCl$_3$ of compound 15.
gHMOC – Compound 15
Acquisition Time (sec) 7.7070
Comment Imported from UXNMR.

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>500.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleus</td>
<td>1H</td>
</tr>
<tr>
<td>Points Count</td>
<td>32768</td>
</tr>
<tr>
<td>Sweep Width (Hz)</td>
<td>8503.40</td>
</tr>
</tbody>
</table>

Sweep Width (Hz) 8503.40
Temperature (degree C) 27.000

1H NMR (500 MHz) in CDCl$_3$ of compound 16.
13C (DEPT-135) (Distortionless Enhancement by Polarization Transfer)

13C NMR (125 MHz) in CDCl$_3$ of compound 16.
gCOSY – Compound 16
gHMBC – Compound 16
gNOESY – Compound 16