Supplementary Information

Atropisomerism of a monosubstituted perfluoro[2.2]paracyclophane.

A combined synthetic, kinetic, spectroscopic
and computational study

Ion Ghiviriga, Henry Martinez, Christian Kuhn, Lianhao Zhang,
and William R. Dolbier, Jr.*

Department of Chemistry, University of Florida, Gainesville, FL 32611-7200

Table of Contents

Kinetics

Measurement of barrier for rotation by nOe difference experiments S2

Measurement of the rate constant of the reaction 5a → 5b at 25 °C S3

NMR Spectra

1H NMR spectrum of compound 5 S4

19F NMR spectrum of compound 5, TOCSYID of 5a and 5b S5

1H–13C gHMDC spectrum of 5 S6-S9

19F–19F DQCOSY spectrum of 5 S10-S12

1H NMR spectrum of compound 6 S13-S14

1H–13C gHMBC spectrum of 6 S15

19F NMR spectrum of compound 6 S16-S18

19F–19F DQCOSY of 6 S19-S21

19F–19F nOe difference spectrum of 6 S22

19F–19F nOe difference spectrum of 5 S23
Kinetics

Measurement of barrier for rotation by nOe difference experiments

The temperature was corrected with the ethylene glycol standard. The temperature measured by the difference of the chemical shifts of the proton signals in ethylene glycol, corrected temp, and the temperature read by the thermocouple, temp, were in the linear relationship

Corrected temp = 0.9835 x temp – 0.1019

<table>
<thead>
<tr>
<th>temp (°C)</th>
<th>temp corrected</th>
<th>T1 (s)</th>
<th>MB(∞)</th>
<th>k=(1-MB(∞))/MB(∞)/T1</th>
<th>1/T</th>
<th>ln(k/T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>93.33</td>
<td>1.64</td>
<td>0.9675</td>
<td>0.0205</td>
<td>0.002729</td>
<td>-9.792</td>
</tr>
<tr>
<td>115</td>
<td>113.00</td>
<td>1.97</td>
<td>0.8633</td>
<td>0.0804</td>
<td>0.002590</td>
<td>-8.477</td>
</tr>
<tr>
<td>125</td>
<td>122.84</td>
<td>2.01</td>
<td>0.7511</td>
<td>0.1649</td>
<td>0.002525</td>
<td>-7.784</td>
</tr>
</tbody>
</table>

\[
\ln(k/T) \text{ vs. } 1/T
\]

\[
y = -9810.7x + 16.965 \\
R^2 = 0.999
\]

<table>
<thead>
<tr>
<th>ΔH (kcal/mol)</th>
<th>ΔS (cal/mol/K)</th>
<th>ΔG (25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.49</td>
<td>-13.50</td>
<td>23.51</td>
</tr>
</tbody>
</table>

Standard error of ΔG_{298} = 1.1 kcal/mol.
Measurement of the rate constant of the reaction 5a → 5b at 25 °C

The reaction 5a → 5b was monitored in benzene-d6 at 25 °C (reading of the thermocouple, uncorrected) by 1H NMR, for 18 hrs. Spectra were acquired in 64 transients, with a relaxation delay of 10 s and an acquisition time of 10 s, for a total of 51 spectra. Only 40 of them were taken into calculating the rate constant, because in the last ones the mixture was very close to equilibrium and the errors in ln([5a]-[5a]eq) were large. The signals of H1’’ were used for integration, after baseline correction: 4.30 – 4.19 ppm [5b], 4.03 – 3.84 ppm [5a] + [5b], and 3.75 – 3.63 [5a].

The slope of the plot ln([5a]-[5a]eq) , which is the logarithm of the difference between the concentration of 5a at time t and the concentration at equilibrium, vs. time is the sum of the rate constants for the forward and backward reactions, kf + kb. The equilibrium constant, K = kf/kb is 1, and kf = kb = 3.67 x 10^-5 s^-1. (standard error 0.07 x 10^-5 s^-1). This corresponds to a half-life time of 5.25 hrs.
Figure 1S. 1H spectrum of compound 5 in benzene-d6 at 25 °C.
Figure 25. 19F spectrum of compound 5 in benzene-d_6 at 25 °C. (bottom) and TOCSY1D spectra of conformers 5a (top) and 5b.
Figure 3Sa. 1H-13C gHMBC spectrum of compound 5 in benzene-d$_6$ at 25 °C.
Figure 3Sb. 1H-13C gHMBC spectrum of compound 5 in benzene-d_6 at 25 °C. (expansion).
Figure S3. 1H-13C gHMBC spectrum of compound 5 in benzene-d$_6$ at 25 °C. (expansion.)
Figure 3Sd. 1H-13C gHMBC spectrum of compound 5 in benzene-d_6 at 25 °C. (expansion).
Figure 4Sa. 19F-19F DQCOSY spectrum of compound 5 in benzene-d$_6$ at 25 °C. (expansion.)
Figure 4Sb. 19F-19F DQ COSY spectrum of compound 5 in benzene-d$_6$ at 25 °C (expansion).
Figure 4Sc. 19F–19F DQCOSY spectrum of compound 5 in benzene-d_6 at 25 °C. (expansion).
Figure 5S. 1H spectrum of compound 6 in benzene-d$_6$ at 25 °C.
Figure 5Sa. 1H spectrum of compound 6 in benzene-d$_6$ at 25°C (expansion).
Figure 6. $^1\text{H}-^{13}\text{C}$ gHMBC spectrum of compound 6 in benzene-d$_6$ at 25°C.
Figure 7S. 19F spectrum of compound 6 in benzene-d$_6$ at 25 °C.
Figure 7Sa. 19F spectrum of compound 6 in benzene-d_6 at 25 °C (expansion).
Figure 7Sb. 19F spectrum of compound 6 in benzene-d_6 at 25 °C (expansion).
Figure 7Sa. 19F-19F DQCOSY spectrum of compound 6 in benzene-d_6 at 25 °C (expansion).
Figure 7Sb. 19F–19F DQCOSY spectrum of compound 6 in benzene-d$_6$ at 25 °C (expansion).
Figure 7Sc. 19F-19F DQCOSY spectrum of compound 6 in benzene-d_6 at 25 °C (expansion).
Figure 8S. 19F-19F nOe difference spectrum of compound 6 in benzene-d_6 at 25 °C (top). And the 19F spectrum (bottom).
Figure 9S. 19F-19F nOe difference spectrum of compound 5 in benzene-d_6 at 25 °C (top) and the 19F spectrum (bottom)