Experimental. A prismatic crystal (0.1x0.1x0.2 mm) was selected and mounted on a MAR345 diffractometer with an image plate detector. Unit-cell parameters were determined from automatic 185 reflections (3 < θ < 31°) and refined by least-squares method. Intensities were collected with graphite monochromatized Mo Kα radiation. 16387 reflections were measured in the range 1.58 ≤ θ ≤ 32.35. 5891 of which were non-equivalent by symmetry (Rint(on I) = 0.076). 5116 reflections were assumed as observed applying the condition I > 2σ(I). Lorentz-polarization but no absorption corrections were made.

The structure was solved by Direct methods, using SHELXS computer program (Sheldrick, G.M., (1997), A computer program for automatic solution of crystal structure. UNIVER goettingen, Germany) and refined by full-matrix least-squares method with SHELX97 computer program (Sheldrick, G.M., (1997), A program for crystal structure refinement. Univer Goettinhen, Germany), using 16387 reflections, (very negative intensities were not assumed). The function minimized was Σ w ||Fo||² - ||Fc||² /P, where w = [σ²(I) +(0.0785P)²+5.2849P]⁻¹, and P = (||Fo||² + 2 ||Fc||²)/3, f, f' and f'' were taken from International Tables of X-Ray Crystallography (International Tables of X-Ray Crystallography, (1974), Ed. Kynoch press, Vol. IV, pp 99-100 and 149). 15H atoms were located from a difference synthesis and refined with an overall isotropic temperature factor and 7H atoms were computed and refined, using a riding model, with an isotropic temperature factor equal to 1.2 time the equivalent temperature factor of the atom which are linked. The final R(on F) factor was 0.077, wR(on ||F||²) = 0.181 and goodness of fit = 1.09 for all observed reflections. Number of refined parameters was 351. Max. shift/esd = 0.00, Mean shift/esd = 0.00. Max. and min. peaks in final difference synthesis was 0.562 and -0.767 e.Å⁻³, respectively.

authors cristal.ografics: (1,2) Mercè Font-Bardia and (1) Teresa Calvet, (1) Cristallografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona, Martí i Franquès s/n. 08028-Barcelona (2) Unitat de Difracció de RX. Centre Científic i Tecnològic de la Universitat de Barcelona (CCiTUB). Universitat de Barcelona. Solé i Sabaris 1-3. 08028-Barcelona
Table 1. Crystal data and structure refinement for xcpm80.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>xcpm80</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{24}H_{32}O_{6}S_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>470.54</td>
</tr>
<tr>
<td>Temperature</td>
<td>105(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Orthorhombic, P2_12_12_1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 5.919(3) Å (\alpha = 90 \degree) (\beta = 90 \degree) (\gamma = 90 \degree)</td>
</tr>
<tr>
<td></td>
<td>b = 14.531(5) Å</td>
</tr>
<tr>
<td></td>
<td>c = 25.735(11) Å</td>
</tr>
<tr>
<td>Volume</td>
<td>2213.4(17) Å</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>4, 1.412 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.280 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>984</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.1 x 0.09 x 0.08 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.58 to 32.35 (\degree)</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-8<=h<=7, -19<=k<=20, -38<=l<=38</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>16387 / 5891 [R(int) = 0.0768]</td>
</tr>
<tr>
<td>Completeness to theta = 25.00</td>
<td>94.0 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>5891 / 0 / 351</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.098</td>
</tr>
<tr>
<td>Final R indices [I>2(\sigma(I))]</td>
<td>R1 = 0.0779, wR2 = 0.1815</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0965, wR2 = 0.2035</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>-0.09(13)</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.016(2)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.562 and -0.767 e.Å⁻³</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\AA^2 \times 10^3$) for xcpm80. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(1)</td>
<td>8655(2)</td>
<td>4630(1)</td>
<td>8015(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>S(2)</td>
<td>10291(2)</td>
<td>4130(1)</td>
<td>9067(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>6249(7)</td>
<td>8109(2)</td>
<td>8349(1)</td>
<td>38(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>9733(7)</td>
<td>7753(2)</td>
<td>8630(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>11039(5)</td>
<td>4712(2)</td>
<td>7917(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>7140(6)</td>
<td>5216(2)</td>
<td>7731(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>12410(5)</td>
<td>4614(2)</td>
<td>9104(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>10277(6)</td>
<td>3241(2)</td>
<td>8822(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>10478(8)</td>
<td>6472(3)</td>
<td>9675(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>10411(9)</td>
<td>6668(3)</td>
<td>10208(2)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>8517(9)</td>
<td>6458(3)</td>
<td>10499(2)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>6640(8)</td>
<td>6054(3)</td>
<td>10259(2)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>6672(7)</td>
<td>5883(3)</td>
<td>9723(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>8617(7)</td>
<td>6075(3)</td>
<td>9429(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>8628(8)</td>
<td>5896(3)</td>
<td>8840(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>6908(8)</td>
<td>6561(3)</td>
<td>8600(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>7802(8)</td>
<td>7516(3)</td>
<td>8531(2)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>6910(12)</td>
<td>9067(4)</td>
<td>8303(2)</td>
<td>47(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>4767(8)</td>
<td>6365(4)</td>
<td>8491(2)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>8249(8)</td>
<td>4870(3)</td>
<td>8716(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>7802(7)</td>
<td>3476(3)</td>
<td>7920(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>5607(8)</td>
<td>3200(3)</td>
<td>8053(2)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>5043(9)</td>
<td>2276(4)</td>
<td>7984(2)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>6591(9)</td>
<td>1645(4)</td>
<td>7780(2)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>8711(10)</td>
<td>1941(3)</td>
<td>7642(2)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>9345(8)</td>
<td>2856(3)</td>
<td>7709(2)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>9159(8)</td>
<td>3977(3)</td>
<td>9699(2)</td>
<td>30(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>10492(8)</td>
<td>4205(3)</td>
<td>10123(2)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>9708(10)</td>
<td>3983(4)</td>
<td>10620(2)</td>
<td>40(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>7618(10)</td>
<td>3567(4)</td>
<td>10682(2)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>6317(10)</td>
<td>3344(4)</td>
<td>10250(2)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>7081(8)</td>
<td>3540(4)</td>
<td>9753(2)</td>
<td>34(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for xcpm80.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(1)-O(4)</td>
<td>1.436(3)</td>
</tr>
<tr>
<td>S(1)-O(3)</td>
<td>1.439(3)</td>
</tr>
<tr>
<td>S(1)-C(13)</td>
<td>1.768(5)</td>
</tr>
<tr>
<td>S(1)-C(12)</td>
<td>1.853(4)</td>
</tr>
<tr>
<td>S(2)-O(6)</td>
<td>1.437(3)</td>
</tr>
<tr>
<td>S(2)-O(5)</td>
<td>1.442(3)</td>
</tr>
<tr>
<td>S(2)-C(19)</td>
<td>1.773(5)</td>
</tr>
<tr>
<td>S(2)-C(12)</td>
<td>1.853(4)</td>
</tr>
<tr>
<td>O(1)-C(9)</td>
<td>1.344(6)</td>
</tr>
<tr>
<td>O(1)-C(10)</td>
<td>1.450(7)</td>
</tr>
<tr>
<td>O(2)-C(9)</td>
<td>1.221(6)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.395(6)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.401(6)</td>
</tr>
<tr>
<td>C(1)-H(1)</td>
<td>1.07(5)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.382(7)</td>
</tr>
<tr>
<td>C(2)-H(2)</td>
<td>0.95(7)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.400(7)</td>
</tr>
<tr>
<td>C(3)-H(3)</td>
<td>1.06(5)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.401(6)</td>
</tr>
<tr>
<td>C(4)-H(4)</td>
<td>1.06(5)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.406(6)</td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.537(6)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.534(6)</td>
</tr>
<tr>
<td>C(7)-C(12)</td>
<td>1.542(6)</td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>1.04(5)</td>
</tr>
<tr>
<td>C(8)-C(11)</td>
<td>1.328(7)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.496(7)</td>
</tr>
<tr>
<td>C(10)-H(10)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(10)-H(10A)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(10)-H(10B)</td>
<td>0.9600</td>
</tr>
<tr>
<td>C(11)-H(11)</td>
<td>0.94(7)</td>
</tr>
<tr>
<td>C(11)-H(11A)</td>
<td>1.01(6)</td>
</tr>
<tr>
<td>C(12)-H(12)</td>
<td>0.99(5)</td>
</tr>
<tr>
<td>C(13)-C(18)</td>
<td>1.393(7)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.402(7)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.394(7)</td>
</tr>
<tr>
<td>C(14)-H(14)</td>
<td>1.03(5)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.399(8)</td>
</tr>
<tr>
<td>C(15)-H(15)</td>
<td>1.02(9)</td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>1.373(8)</td>
</tr>
<tr>
<td>C(16)-H(16)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(17)-C(18)</td>
<td>1.392(7)</td>
</tr>
<tr>
<td>C(17)-H(17)</td>
<td>1.04(6)</td>
</tr>
<tr>
<td>C(18)-H(18)</td>
<td>1.05(7)</td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.387(6)</td>
</tr>
<tr>
<td>C(19)-C(24)</td>
<td>1.391(7)</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.397(7)</td>
</tr>
<tr>
<td>C(20)-H(20)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.387(8)</td>
</tr>
<tr>
<td>C(21)-H(21)</td>
<td>1.02(6)</td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.392(8)</td>
</tr>
<tr>
<td>C(22)-H(22)</td>
<td>1.06(6)</td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.384(7)</td>
</tr>
<tr>
<td>C(23)-H(23)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(24)-H(24)</td>
<td>1.05(6)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>O(4) - S(1) - O(3)</td>
<td>118.3(2)</td>
</tr>
<tr>
<td>O(4) - S(1) - C(13)</td>
<td>108.3(2)</td>
</tr>
<tr>
<td>O(3) - S(1) - C(13)</td>
<td>109.6(2)</td>
</tr>
<tr>
<td>O(4) - S(1) - C(12)</td>
<td>107.5(2)</td>
</tr>
<tr>
<td>O(3) - S(1) - C(12)</td>
<td>106.3(2)</td>
</tr>
<tr>
<td>C(13) - S(1) - C(12)</td>
<td>106.0(2)</td>
</tr>
<tr>
<td>O(6) - S(2) - O(5)</td>
<td>118.2(2)</td>
</tr>
<tr>
<td>O(6) - S(2) - C(19)</td>
<td>106.7(2)</td>
</tr>
<tr>
<td>O(5) - S(2) - C(19)</td>
<td>109.3(2)</td>
</tr>
<tr>
<td>O(6) - S(2) - C(12)</td>
<td>107.7(2)</td>
</tr>
<tr>
<td>O(5) - S(2) - C(12)</td>
<td>108.4(2)</td>
</tr>
<tr>
<td>C(19) - S(2) - C(12)</td>
<td>105.9(2)</td>
</tr>
<tr>
<td>C(9) - O(1) - C(10)</td>
<td>117.3(5)</td>
</tr>
<tr>
<td>C(6) - C(1) - C(2)</td>
<td>120.3(4)</td>
</tr>
<tr>
<td>C(6) - C(1) - H(1)</td>
<td>119(3)</td>
</tr>
<tr>
<td>C(2) - C(1) - H(1)</td>
<td>120(3)</td>
</tr>
<tr>
<td>C(3) - C(2) - C(1)</td>
<td>120.6(4)</td>
</tr>
<tr>
<td>C(3) - C(2) - H(2)</td>
<td>123(4)</td>
</tr>
<tr>
<td>C(1) - C(2) - H(2)</td>
<td>116(4)</td>
</tr>
<tr>
<td>C(2) - C(3) - C(4)</td>
<td>119.9(4)</td>
</tr>
<tr>
<td>C(2) - C(3) - H(3)</td>
<td>121(3)</td>
</tr>
<tr>
<td>C(4) - C(3) - H(3)</td>
<td>119(3)</td>
</tr>
<tr>
<td>C(3) - C(4) - C(5)</td>
<td>119.8(4)</td>
</tr>
<tr>
<td>C(3) - C(4) - H(4)</td>
<td>119(3)</td>
</tr>
<tr>
<td>C(5) - C(4) - H(4)</td>
<td>121(3)</td>
</tr>
<tr>
<td>C(4) - C(5) - C(6)</td>
<td>120.4(4)</td>
</tr>
<tr>
<td>C(4) - C(5) - H(5)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(6) - C(5) - H(5)</td>
<td>119.8</td>
</tr>
<tr>
<td>C(1) - C(6) - C(5)</td>
<td>119.0(4)</td>
</tr>
<tr>
<td>C(1) - C(6) - C(7)</td>
<td>120.9(4)</td>
</tr>
<tr>
<td>C(5) - C(6) - C(7)</td>
<td>120.0(4)</td>
</tr>
<tr>
<td>C(8) - C(7) - C(6)</td>
<td>106.8(3)</td>
</tr>
<tr>
<td>C(8) - C(7) - C(12)</td>
<td>115.3(4)</td>
</tr>
<tr>
<td>C(6) - C(7) - C(12)</td>
<td>111.6(4)</td>
</tr>
<tr>
<td>C(8) - C(7) - H(7)</td>
<td>105(3)</td>
</tr>
<tr>
<td>C(6) - C(7) - H(7)</td>
<td>108(3)</td>
</tr>
<tr>
<td>C(12) - C(7) - H(7)</td>
<td>110(3)</td>
</tr>
<tr>
<td>C(11) - C(8) - C(9)</td>
<td>120.8(5)</td>
</tr>
<tr>
<td>C(11) - C(8) - C(7)</td>
<td>125.7(5)</td>
</tr>
<tr>
<td>C(9) - C(8) - C(7)</td>
<td>113.4(4)</td>
</tr>
<tr>
<td>O(2) - C(9) - O(1)</td>
<td>122.2(5)</td>
</tr>
<tr>
<td>O(2) - C(9) - C(8)</td>
<td>124.6(4)</td>
</tr>
<tr>
<td>O(1) - C(9) - C(8)</td>
<td>113.2(4)</td>
</tr>
<tr>
<td>O(1) - C(10) - H(10)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(1) - C(10) - H(10A)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(10) - C(10) - H(10A)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(1) - C(10) - H(10B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(10) - C(10) - H(10B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(10A) - C(10) - H(10B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(8) - C(11) - H(11)</td>
<td>115(4)</td>
</tr>
<tr>
<td>C(8) - C(11) - H(11A)</td>
<td>122(3)</td>
</tr>
<tr>
<td>H(11) - C(11) - H(11A)</td>
<td>122(5)</td>
</tr>
<tr>
<td>C(7) - C(12) - S(2)</td>
<td>111.4(3)</td>
</tr>
<tr>
<td>C(7) - C(12) - S(1)</td>
<td>111.5(3)</td>
</tr>
<tr>
<td>S(2) - C(12) - S(1)</td>
<td>106.3(2)</td>
</tr>
<tr>
<td>C(7) - C(12) - H(12)</td>
<td>115(3)</td>
</tr>
<tr>
<td>S(2) - C(12) - H(12)</td>
<td>106(3)</td>
</tr>
<tr>
<td>S(1) - C(12) - H(12)</td>
<td>106(3)</td>
</tr>
<tr>
<td>C(18) - C(13) - C(14)</td>
<td>121.2(4)</td>
</tr>
<tr>
<td>C(18) - C(13) - S(1)</td>
<td>118.7(4)</td>
</tr>
<tr>
<td>C(14) - C(13) - S(1)</td>
<td>120.1(4)</td>
</tr>
</tbody>
</table>
Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters (Å\(^2\) x 10\(^3\)) for xcpm80.
The anisotropic displacement factor exponent takes the form:
\[-2 \pi^2 \left[h^2 a^* a^* U_{11} + ... + 2 h k a^* b^* U_{12} \right]\]

<table>
<thead>
<tr>
<th></th>
<th>U(_{11})</th>
<th>U(_{22})</th>
<th>U(_{33})</th>
<th>U(_{23})</th>
<th>U(_{13})</th>
<th>U(_{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(1)</td>
<td>28(1)</td>
<td>25(1)</td>
<td>30(1)</td>
<td>0(1)</td>
<td>1(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>S(2)</td>
<td>28(1)</td>
<td>27(1)</td>
<td>31(1)</td>
<td>0(1)</td>
<td>-2(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>45(2)</td>
<td>26(2)</td>
<td>43(2)</td>
<td>4(1)</td>
<td>1(2)</td>
<td>7(2)</td>
</tr>
<tr>
<td>O(2)</td>
<td>39(2)</td>
<td>31(2)</td>
<td>47(2)</td>
<td>0(1)</td>
<td>-2(2)</td>
<td>-7(2)</td>
</tr>
<tr>
<td>O(3)</td>
<td>28(2)</td>
<td>27(2)</td>
<td>37(2)</td>
<td>-5(1)</td>
<td>6(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>37(2)</td>
<td>30(2)</td>
<td>32(2)</td>
<td>2(1)</td>
<td>0(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>28(2)</td>
<td>32(2)</td>
<td>35(2)</td>
<td>4(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>40(2)</td>
<td>26(2)</td>
<td>33(2)</td>
<td>-2(1)</td>
<td>-6(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>26(2)</td>
<td>23(2)</td>
<td>40(2)</td>
<td>2(2)</td>
<td>-1(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>35(2)</td>
<td>26(3)</td>
<td>37(2)</td>
<td>-2(2)</td>
<td>-8(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>38(2)</td>
<td>28(2)</td>
<td>31(2)</td>
<td>-5(2)</td>
<td>-5(2)</td>
<td>6(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>32(2)</td>
<td>29(3)</td>
<td>36(2)</td>
<td>-1(2)</td>
<td>2(2)</td>
<td>8(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>27(2)</td>
<td>28(2)</td>
<td>31(2)</td>
<td>-1(2)</td>
<td>0(1)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>22(2)</td>
<td>24(2)</td>
<td>33(2)</td>
<td>3(1)</td>
<td>-1(1)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>27(2)</td>
<td>25(2)</td>
<td>30(2)</td>
<td>0(2)</td>
<td>2(1)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>32(2)</td>
<td>25(2)</td>
<td>27(2)</td>
<td>-2(2)</td>
<td>2(1)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>36(2)</td>
<td>25(3)</td>
<td>32(2)</td>
<td>0(2)</td>
<td>2(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>71(4)</td>
<td>25(3)</td>
<td>44(3)</td>
<td>7(2)</td>
<td>9(2)</td>
<td>9(3)</td>
</tr>
<tr>
<td>C(11)</td>
<td>30(2)</td>
<td>37(3)</td>
<td>33(2)</td>
<td>1(2)</td>
<td>3(2)</td>
<td>6(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>28(2)</td>
<td>25(2)</td>
<td>31(2)</td>
<td>2(2)</td>
<td>-1(1)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>29(2)</td>
<td>27(2)</td>
<td>31(2)</td>
<td>2(2)</td>
<td>-4(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>31(2)</td>
<td>27(3)</td>
<td>44(2)</td>
<td>-2(2)</td>
<td>-3(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>35(3)</td>
<td>34(3)</td>
<td>46(3)</td>
<td>2(2)</td>
<td>-5(2)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(16)</td>
<td>49(3)</td>
<td>25(3)</td>
<td>39(2)</td>
<td>-1(2)</td>
<td>-8(2)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>C(17)</td>
<td>46(3)</td>
<td>24(2)</td>
<td>36(2)</td>
<td>-5(2)</td>
<td>-4(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(18)</td>
<td>33(2)</td>
<td>29(3)</td>
<td>32(2)</td>
<td>-2(2)</td>
<td>-2(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(19)</td>
<td>31(2)</td>
<td>24(2)</td>
<td>35(2)</td>
<td>-1(2)</td>
<td>1(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>33(2)</td>
<td>23(2)</td>
<td>39(2)</td>
<td>1(2)</td>
<td>-4(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>51(3)</td>
<td>37(3)</td>
<td>33(2)</td>
<td>3(2)</td>
<td>-5(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(22)</td>
<td>54(3)</td>
<td>39(3)</td>
<td>35(2)</td>
<td>5(2)</td>
<td>4(2)</td>
<td>-5(3)</td>
</tr>
<tr>
<td>C(23)</td>
<td>41(3)</td>
<td>28(3)</td>
<td>47(3)</td>
<td>5(2)</td>
<td>3(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(24)</td>
<td>34(2)</td>
<td>27(3)</td>
<td>41(2)</td>
<td>2(2)</td>
<td>0(2)</td>
<td>1(2)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for xcpm80.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(5)</td>
<td>5400</td>
<td>5640</td>
<td>9561</td>
<td>34</td>
</tr>
<tr>
<td>H(10)</td>
<td>5588</td>
<td>9441</td>
<td>8257</td>
<td>56</td>
</tr>
<tr>
<td>H(10A)</td>
<td>7892</td>
<td>9140</td>
<td>8009</td>
<td>56</td>
</tr>
<tr>
<td>H(10B)</td>
<td>7688</td>
<td>9253</td>
<td>8613</td>
<td>56</td>
</tr>
<tr>
<td>H(16)</td>
<td>6188</td>
<td>1030</td>
<td>7738</td>
<td>45</td>
</tr>
<tr>
<td>H(20)</td>
<td>11875</td>
<td>4498</td>
<td>10078</td>
<td>38</td>
</tr>
<tr>
<td>H(23)</td>
<td></td>
<td>3061</td>
<td>10294</td>
<td>80(20)</td>
</tr>
<tr>
<td>H(1)</td>
<td>11970(90)</td>
<td>6610(40)</td>
<td>9453(19)</td>
<td>28(13)</td>
</tr>
<tr>
<td>H(2)</td>
<td>11720(110)</td>
<td>6950(40)</td>
<td>10350(20)</td>
<td>48(17)</td>
</tr>
<tr>
<td>H(3)</td>
<td>8490(90)</td>
<td>6550(40)</td>
<td>10906(19)</td>
<td>30(13)</td>
</tr>
<tr>
<td>H(4)</td>
<td>5210(90)</td>
<td>5880(30)</td>
<td>10487(18)</td>
<td>25(12)</td>
</tr>
<tr>
<td>H(7)</td>
<td>10190(90)</td>
<td>6110(30)</td>
<td>8696(17)</td>
<td>21(11)</td>
</tr>
<tr>
<td>H(11)</td>
<td>3890(120)</td>
<td>6870(50)</td>
<td>8380(20)</td>
<td>52(19)</td>
</tr>
<tr>
<td>H(11A)</td>
<td>4100(100)</td>
<td>5740(40)</td>
<td>8550(20)</td>
<td>40(16)</td>
</tr>
<tr>
<td>H(12)</td>
<td>6730(90)</td>
<td>4630(40)</td>
<td>8807(18)</td>
<td>23(12)</td>
</tr>
<tr>
<td>H(14)</td>
<td>4480(90)</td>
<td>3690(40)</td>
<td>8170(19)</td>
<td>28(13)</td>
</tr>
<tr>
<td>H(15)</td>
<td>3480(140)</td>
<td>2040(50)</td>
<td>8090(30)</td>
<td>80(20)</td>
</tr>
<tr>
<td>H(17)</td>
<td>9910(110)</td>
<td>1490(40)</td>
<td>7500(20)</td>
<td>39(15)</td>
</tr>
<tr>
<td>H(18)</td>
<td>10990(120)</td>
<td>3090(50)</td>
<td>7620(30)</td>
<td>55(19)</td>
</tr>
<tr>
<td>H(21)</td>
<td>10640(120)</td>
<td>4130(50)</td>
<td>10940(20)</td>
<td>55(19)</td>
</tr>
<tr>
<td>H(22)</td>
<td>7020(100)</td>
<td>3400(40)</td>
<td>11060(20)</td>
<td>36(15)</td>
</tr>
<tr>
<td>H(24)</td>
<td>6190(100)</td>
<td>3350(40)</td>
<td>9420(20)</td>
<td>41(15)</td>
</tr>
</tbody>
</table>
C(7) - C(6) C(8) C(12) H(7) sp3 R