Electronic Supplementary Information

Resorcin[4]arene-derived mono-, bis- and tetra-imidazoli um salts as ligand precursors for Suzuki-Miyaura crosscoupling

Hani El Moll,^a David Sémeril,^{*a} Dominique Matt,^{*a} Loïc Toupet,^b and Jean-Jacques Harrowfield^c

^aLaboratoire de Chimie Inorganique et Catalyse, Institut de Chimie UMR 7177 CNRS, Université de Strasbourg, 67008 Strasbourg Cedex (France) E-mail: dsemeril@unistra.fr; dmatt@unistra.fr ^bInstitut de Physique de Rennes, UMR 6251, Université de Rennes 1, Campus de Beaulieu, 35042, Rennes cedex, France ^c Université de Strasbourg, ISIS, UMR 7006 CNRS, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, F-67083, Strasbourg cedex, France

Contents

Table S-1. Suzuki-Miyaura cross-coupling of aryl bromides and phenylboronic acid using [Pd(OAc)₂] and a mono-imidazolium salt: p 2

Table S-2. Suzuki-Miyaura cross-coupling of aryl bromides and phenylboronic acid using $[Pd(OAc)_2]$ and a mono-imidazolium salt – increasing the palladium loading or the reaction time: p 3

Table S-3. Suzuki-Miyaura cross-coupling of aryl bromides and phenylboronic acid using [Pd(OAc)₂] and mono-imidazolium salts **3** or **16**: p 4

Table S-4. Suzuki-Miyaura cross-coupling of aryl bromides and phenylboronic acid using [Pd(OAc)₂] and a bis-imidazolium salt: p 5

Table S-5. Suzuki-Miyaura cross-coupling of aryl bromides and phenylboronic acid using [Pd(OAc)₂] and a tetra-imidazolium salt: p 6

Example of characterising data for a mono-imidazolium salt (3): pp 7-8 Example of characterising data for a bis-imidazolium salt (6): pp 9-10 Example of characterising data for a tetra-imidazolium salt (14): pp 11-12

Fig. S-1. MS (ESI-TOF) of the reaction mixture obtained by reacting [Pd(OAc)₂] with **9**: p 13 **Fig. S-2.** Two possible structures for the hypothetical chelate complex [PdBr₂•**9**]

Entry	Å rDr		Mono-imidazolium salt			
Linu y	AIDI		2	3	4	
1	MeO-Br	conv. (%)	5.7	10.5	13.4	
		PhPh:ArPh (%)	6.3	7.0	0.5	
2	OMe Br	conv. (%)	7.9	12.4	14.8	
		PhPh:ArPh (%)	5.4	7.6	4.4	
3	MeO Br	conv. (%)	50.2	38.1	51.7	
		PhPh:ArPh (%)	0.9	1.8	1.3	
4	Br	conv. (%)	39.1	45.3	53.4	
		PhPh:ArPh (%)	3.2	2.3	1.0	
5	∕── Br	conv. (%)	6.5	13.0	9.1	
		PhPh:ArPh (%)	2.8	3.7	2.2	
6	Br	conv. (%)	10.6	8.2	5.2	
		PhPh:ArPh (%)	3.1	6.2	0.2	
7	Br	conv. (%)	4.4	7.0	4.8	
		PhPh:ArPh (%)	4.6	4.9	0.9	
8	——————————————————————————————————————	conv. (%)	7.5	7.9	11.2	
		PhPh:ArPh (%)	3.7	4.1	1.1	

Table S-1. Suzuki-Miyaura cross-coupling of aryl bromides and phenylboronic acid using [Pd(OAc)₂] and a mono-imidazolium salt.^[a]

[a] Conditions: [Pd(OAc)₂] (5 x 10⁻⁵ mmol, 1 x 10⁻² mol %), mono-imidazolium salt (1 x 10⁻⁴ mmol, 2 equiv. / Pd), ArBr (0.5 mmol), PhB(OH)₂ (0.122 g, 1.0 mmol), Cs₂CO₃ (0.326 g, 1.0 mmol), decane (0.05 mL), DMF (1.5 mL), 130°C, 1 h. The conversions were determined by GC, the calibrations being based on decane.

Table S-2. Suzuki-Miyaura cross-coupling of aryl bromides and phenylboronic acid using $[Pd(OAc)_2]$ and a mono-imidazolium salt – increasing the palladium loading or the reaction time.^[a]

Entry	ArBr	Imidazolium salt	[Pd(OAc) ₂] (mol %)	Time (h)	Conversion (%)	PhPh:ArPh (%)
1	Mac	4	0.1	2	92.8	1.1
2		4	0.01	16	94.9	0.8
3	OMe		0.1	2	89.3	4.8
4	Br	4	0.01	16	95.7	5.2
5	Br	1	0.1	1	98.6	2.2
6	MeO	4	0.01	3	98.5	1.7
7	Br	4	0.1	1	99.1	3.1
8			0.01	3	97.6	2.4
9	<u> </u>	2	0.1	2	93.7	2.7
10	- Bi	3	0.01	16	94.8	3.3
11	\sim	2	0.1	2	87.9	0.6
12	Br		0.01	16	91.6	1.1
13			0.1	2	81,6	2.1
14	Br	3	0.01	16	76.7	1.8
15	Br	1	0.1	2	90.3	0.9
16		4	0.01	16	89.1	1.6

[a] Conditions: [Pd(OAc)₂], mono-imidazolium salt (2 equiv. / Pd), ArBr (0.5 mmol), PhB(OH)₂ (0.122 g, 1.0 mmol), Cs₂CO₃ (0.326 g, 1.0 mmol), decane (0.05 mL), DMF (1.5 mL), 130°C, 1 h. The conversions were determined by GC, the calibrations being based on decane.

Enters	A #D#		Mono-imidazolium salt		
Enuy	AIDI		3	16	
1	MeO-Br	conv. (%)	10.5	13.6	
1		PhPh:ArPh (%)	7.0	5.0	
•	MeO	conv. (%)	38.1	48.5	
2		PhPh:ArPh (%)	1.8	3.2	
0	Br	conv. (%)	45.3	51.6	
3		PhPh:ArPh (%)	2.3	3.2	
4	— — Br	conv. (%)	7.9	10.1	
4		PhPh:ArPh (%)	4.1	6.8	

Table S-3. Suzuki-Miyaura cross-coupling of aryl bromides and phenylboronic acid using [Pd(OAc)₂] and mono-imidazolium salts **3** and **16**.^[a]

[a] Conditions: [Pd(OAc)₂] (5 x 10⁻⁵ mmol, 1 x 10⁻² mol %), mono-imidazolium salt (1 x 10⁻⁴ mmol, 2 equiv. / Pd), ArBr (0.5 mmol), PhB(OH)₂ (0.122 g, 1.0 mmol), Cs₂CO₃ (0.326 g, 1.0 mmol), decane (0.05 mL), DMF (1.5 mL), 130°C, 1 h. The conversions were determined by GC, the calibrations being based on decane.

Entr	۸ «D»		Bis-imidazolium salt				
У	AIDI		6	7	8	9	
1	MeO-Br	conv. (%)	14.7	10.9	12.5	11.6	
		PhPh:ArPh (%)	2.3	7.3	3.6	5.0	
2	OMe	conv. (%)	4.2	12.0	17.5	13.5	
	Br	PhPh:ArPh (%)	6.4	6.8	4.8	2.7	
3	MeO	conv. (%)	76.9	51.5	61.1	40.5	
		PhPh:ArPh (%)	4.0	3.2	1.8	2.8	
1	Br	conv. (%)	52.4	91.3	96.6	41.9	
4		PhPh:ArPh (%)	5.2	3.1	2.4	4.5	
5 ^[b]		conv. (%)		37.2	41.6		
		PhPh:ArPh (%)		3.3	2.6		
6	Br	conv. (%)	7.9	26.6	43.3	32.6	
		PhPh:ArPh (%)	6.0	5.1	4.8	5.2	
7	⟨Br	conv. (%)	6.1	29.6	22.4	14.1	
		PhPh:ArPh (%)	2.2	2.1	2.5	2.1	
8	Br	conv. (%)	7.9	6.1	17.9	22.9	
		PhPh:ArPh (%)	5.4	8.4	5.7	4.9	
9	Br	conv. (%)	15.9	39.6	54.4	57.3	
		PhPh:ArPh (%)	5.4	3.8	2.0	4.3	

Table S-4. Suzuki-Miyaura cross-coupling of aryl bromides and phenylboronic acid using [Pd(OAc)₂] and a bis-imidazolium salt.^[a]

^[a] Conditions: [Pd(OAc)₂] (5 x 10⁻⁵ mmol, 1 x 10⁻² mol %), bis-imidazolium salt (5 x 10⁻⁵ mmol, 1 equiv. / Pd), ArBr (0.5 mmol), PhB(OH)₂ (0.122 g, 1.0 mmol), Cs₂CO₃ (0.326 g, 1.0 mmol), decane (0.05 mL), DMF (1.5 mL), 130°C, 1 h. The conversions were determined by GC, the calibrations being based on decane.

^[b] $[Pd(OAc)_2]$ (5 x 10⁻⁶ mmol, 1 x 10⁻³ mol %), bis-imidazolium salt (5 x 10⁻⁶ mmol, 1 equiv. / Pd).

Entry	۸rBr		Tetra-imidazolium salt			
Епиу	AIDI		11	12	13	14
1	MeO-Br	conv. (%)	14.1	11.3	26.1	23.8
		PhPh:ArPh (%)	1.6	0.3	0.1	1.3
2	OMe	conv. (%)	8.8	2.1	20.8	23.4
	Br	PhPh:ArPh (%)	0.9	2.7	0.2	0.7
3	MeO Br	conv. (%)	32.3	30.9	61.9	35.1
		PhPh:ArPh (%)	0.7	0.2	0.2	0.3
4	Br	conv. (%)	50.4	58.4	77.1	57.7
		PhPh:ArPh (%)	0.3	0.2	0.1	0.3
5	Br	conv. (%)	25.8	26.9	30.7	28.9
		PhPh:ArPh (%)	1.1	0.7	0.2	0.3
6	Br	conv. (%)	6.6	5.4	12.6	23.5
		PhPh:ArPh (%)	0.4	1.0	0.2	0.4
7	Br	conv. (%)	8.5	5.3	15.1	31.1
		PhPh:ArPh (%)	0.5	0.9	0.3	0.8
8	Br	conv. (%)	11.2	21.9	21.7	32.0
		PhPh:ArPh (%)	0.8	0.2	0.1	0.2

Table S-5. Suzuki-Miyaura cross-coupling of aryl bromides and phenylboronic acid using [Pd(OAc)₂] and a tetra-imidazolium salt.^[a]

[a] Conditions: [Pd(OAc)₂] (5 x 10⁻⁵ mmol, 1 x 10⁻² mol %), tetra-imidazolium salt (5 x 10⁻⁵ mmol, 1 equiv. / Pd), ArBr (0.5 mmol), PhB(OH)₂ (0.122 g, 1.0 mmol), Cs₂CO₃ (0.326 g, 1.0 mmol), decane (0.05 mL), DMF (1.5 mL), 130°C, 1 h. The conversions were determined by GC, the calibrations being based on decane.

Example of characterising data for a mono-imidazolium salt

¹H NMR spectrum of **3** (CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of **3** (CDCl₃)

DEPT 135 NMR spectrum of 3 (CDCl₃)

¹H NMR spectrum of **6** (CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **6** (CDCl₃)

DEPT 135 NMR spectrum of 6 (CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **14** (acetone- d_6)

DEPT 135 NMR spectrum of 14 (acetone- d_6)

Reaction of 9 with [Pd(OAc)₂].

A solution of $[Pd(OAc)_2]$ (0.014 g, 0.061 mmol) in DMF (15 mL) was added to a stirred solution of **9** (0.079 g, 0.061 mmol) in DMF (15 mL) at room temperature. The reaction mixture was first heated at 50°C (2 h) then at 80°C (2 h) and finally at 130°C for 2 further hours. The resulting solution was concentrated to *ca*. 1 mL. Addition of hexane (100 mL) afforded a yellow precipitate, which was found to contain several complexes that could not be separated. The mass spectrum of the crude reaction mixture revealed an intense peak (ESI-TOF) at *m/z* 1563.54. This peak could be assigned either to the species [PdBr₂(bis-carbene)₂ + H⁺] or its isomer [PdBr₂(monocarbene-monoimidazolium)]⁺ (requiring 1563.53).

Fig. S-1. MS (ESI-TOF) of the palladium(II) complex derived from 9 (bottom: calculated spectrum).

Fig. S-2. Possible "endo" (a) and "exo" (b) structures for the hypothetical chelate complex [PdBr₂•9]