Supporting Information

DNA duplexes and triplex-forming oligodeoxynucleotides incorporating modified nucleosides which can form stable and selective triplexes

Takashi Kanamori, Yoshiaki Masaki, Masahiro Mizuta, Hirosuke Tsunoda, Akihiro Ohkubo,

Mitsuo Sekine,* Kohji Seio*

Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Japan

Contents

Scheme S1. Synthetis of nucleoside 1a, 1b and their phosphoramidites (2a, 2b)	- S3
Scheme S2. Synthesis phosphoramidite 2d	- S3
Scheme S3. Synthesis of 1-N-(t-Boc)-5-methyl-indole 2-borate (4)	· S3
Experimental procedure	
General Methods	S4
5-bromo-deoxycytidine (1a)	S4
4-N-Benzoyl-5-bromo-5'-O-(4, 4'-dimethoxytrityl)-deoxycytidine (3a)	S4
5-chloro-deoxycytidine (1b)	S5
4-N-Acetyl-5-chloro-5'-O-(4, 4'-dimethoxytrityl)-deoxycytidine (3b)	S5
4-N-Acetvl-5-cvano-5'-O-(4, 4'-dimethoxytrityl)-deoxycytidine (3c)	S6
4-N-Benzoyl-5-bromo-5'-O-(4, 4'-dimethoxytrityl)-deoxycytidine 3'-(2-cyanoethyl N, N-	
diisopropylphosphoramidite) (2a)	S6
4-N-acetyl-5-chloro-5'-O-(4, 4'-dimethoxytrityl)-deoxycytidine 3'-(2-cyanoethyl N, N-	
diisopropylphosphoramidite) (2b)	S 7
4-N-acetyl-5-cyano-5'-O-(4, 4'-dimethoxytrityl)-deoxycytidine 3'-(2-cyanoethyl N, N-	
diisopropylphosphoramidite) (2c)	S 8
1-N-(<i>tert</i> -butoxycarbonyl)-5-methyindol (5)	S 8
1-N-(tert-butoxycarbonyl)-5-methyindol-2-borate (4)	S9
10-(β-D-2-deoxyribos-1-yl)-3-methyl-pyrimido[4, 5-d]pyrimido[1, 6-a]indol (1f)	- S9
β-D-1-(3-methyl-pyrimido[4,5-d]pyrimido[1, 6-a]indol-10-yl)-5-O-(4, 4'-dimethoxytrityl)-	2-
deoxyribose (3f)	S10
β-D-1-(3-methyl-pyrimido[4,5-d]pyrimido[1, 6-a]indol-10-yl)-5-O-(4, 4'-dimethoxytrityl)-	2-
deoxyribose 3-(2-cyanoetyl N,N-diisopropylphosphoramidite) (2f)	S10
Measurement of the pKa of 5-cyanodeoxycytidine (1c)	S11
T _m values of several triplexes in pH 7.0 condition	S12
¹ H-NMR chart of 1a	S13
¹³ C-NMR chart of 1a	S14
¹ H-NMR chart of 3a	S15
¹³ C-NMR chart of 3a	S16
¹ H-NMR chart of 1b	S17
¹³ C-NMR chart of 1b	S18
¹ H-NMR chart of 3b	S19

¹³ C-NMR chart of 3b S	520
'H-NMR chart of 3c S	521
¹³ C-NMR chart of $3c$ S	522
'H-NMR chart of 2a S	523
¹³ C-NMR chart of 2a S	324
³¹ P-NMR chart of 2a S	325
'H-NMR chart of 2b S	526
¹³ C-NMR chart of 2b S	327
³¹ P-NMR chart of 2b S	528
¹ H-NMR chart of 2 c S	529
¹³ C-NMR chart of 2c S	530
³¹ P-NMR chart of 2c S	331
'H-NMR chart of 5 S	532
¹³ C-NMR chart of 5 S	333
'H-NMR chart of 4 S	334
¹³ C-NMR chart of 4 S	335
'H-NMR chart of 1f S	536
¹³ C-NMR chart of 1f S	337
'H-NMR chart of 3f S	538
¹³ C-NMR chart of 3f S	539
'H-NMR chart of 2f S	540
¹³ C-NMR chart of 2f S	341
³¹ P-NMR chart of 2f S	542

Scheme S1. Synthesis of nucleoside 1a, 1b and their phosphoramidites (2a and 2b).

Scheme S2. Synthesis of nucleoside 2c.

Scheme S3. Synthesis of 1-N-(t-Boc)-5-methyl-indole 2-borate (4).

General Methods

The dry solvents were purchased and stored over molecular sieves 4A. ¹H, ¹³C, and ³¹P NMR spectra were obtained at 500, 126, and 203 MHz, respectively. The chemical shifts were measured from DMSO- d_6 (2.49 ppm) for ¹H NMR, DMSO- d_6 (39.5 ppm) for ¹³C NMR and 85% phosphoric acid (0.0 ppm) for ³¹P NMR. Oligonucleotides were purified on anion-exchange high performance liquid chromatography (HPLC) at 50 °C with a linear gradient (10–67%) of solvent I (1 M NaCl in 25 mM phosphate buffer (pH 6.0), 10% acetnitrile) in solvent II (25 mM phosphate buffer (pH 6.0), 10% acetnitrile) in solvent II (25 mM phosphate buffer (pH 6.0), 10% acetnitrile) in H₂O-diammonium hydrogen citrate (100 mg/mL) in H₂O (10 : 1, v/v) as a matrix.

Experimental procedure

5-Bromo-deoxycytidine (1a)^{17, 18} Deoxycytidine (15.0 g, 66.0 mmol) and *N*-bromosuccinimide (12.9 g, 72.6 mmol) was dissolved in acetic acid (150 mL). The reaction mixture was stirred at room temperature for 20 min. Subsequently, the reaction mixture was cooled to room temperature in the water bath and then pyridine was added to neutralize. The solvents were removed under reduced pressure. The crude product was purified by chromatography on silica gel 60 N with CHCl₃-MeOH to give **1a** (18.2 g, 90%). $R_{\rm f}$ 0.25 (CHCl₃-CH₃OH, 4 : 1); IR (KBr) $v_{\rm max}$ 3379, 3057, 1628, 1491, 1074 cm⁻¹; ¹H-NMR (DMSO-*d*₆) δ 8.26 (1H, s), 7.86 (1H, br), 6.98 (1H, br), 6.07 (1H, t, *J* = 6.4 Hz), 5.22 (1H, br), 5.12 (1H, br), 4.21 (1H, d, *J* = 2.2 Hz), 3.78 (1H, d, *J* = 3.2 Hz), 3.61 (1H, m), 3.55 (1H, m), 2.17-2.12 (1H, m), 2.02-1.98 (1H, m); ¹³C-NMR (DMSO-*d*₆) δ 162.0, 153.9, 142.1, 87.5, 86.4, 85.6,70.0, 60.9, 40.9. ESI-MS *m/z* calcd for C₉H₁₃BrN₃O₄+ [M + H]+ 306.0084; found 306.0076.

4-N-Benzoyl-5-bromo-5'-O-(4, 4'-dimethoxytrityl)-deoxycytidine (3a) Compound **1a** (3.0 g, 9.8 mmol) was treated with benzoic anhydride (2.4 g, 10.8 mmol) in DMF (40 mL) at room temperature for

10 h. After the completion of the reaction, solvent was evaporated. Ethyl acetate was added, and the precipitates were filtrated and dried under vacuum to give 3.4 g of the 4-*N*-bezoyl-5-bromo-deoxycytidine which was used without further purification. 3.0 g of this compound was treated with 4, 4'-dimethoxytrityl chloride (3.1 g, 8.0 mmol) in dry pyridine (73 mL) at room temperature for 10 h. The reaction was quenched with methanol and the solvent was evaporated. The crude product was purified by C-200 silica gel chromatography with hexane-ethyl acetate-0.5% pyridine to give **3a** (4.0 g, 65%, 2 steps). *R*_f 0.10 (*n*-hexane-EtOAc, 3 : 2); IR (KBr) v_{max} 3433, 3065, 2932, 1709, 1578, 1508, 1248, 1175, 1094, 1034, 827, 712 cm⁻¹; ¹H-NMR (DMSO-*d*₆) δ 12.79 (1H, br), 8.18-8.14 (3H, br), 7.61 (1H, m), 7.51 (2H, m), 7.40 (2H, m), 7.33-7.28 (6H, m), 7.22 (1H, m), 6.91-6.89 (4H, m), 6.12 (1H, t, *J* = 6.5Hz), 5.37 (1H, d, *J* = Hz), 4.28 (1H, br), 3.97 (1H, s), 3.72 (6H, s), 3.27-3.19 (2H, br), 2.32 (2H, br); ¹³C-NMR (DMSO-*d*₆) δ 158.1, 144.7, 135.5, 135.3, 132.9, 129.7, 128.5, 128.0, 127.6, 126.8, 113.3, 86.2, 86.0, 70.2, 63.5, 55.1. ESI-MS *m/z* calcd for C₃₇H₃₅BrN₃O₇+ [M + H]+ 712.1653; found 712.1667.

5-Chloro-deoxycytidine (1b)¹⁸⁻²⁰ In a manner similar to that described for the synthesis of **1a**, deoxycytidine (11.0 g, 48.4 mmol) and *N*-chlorosuccinimide (6.5 g, 50.0 mmol) were treated in acetic acid (100 mL). The reaction mixture was stirred at 95 °C for 20 min. The purification by chromatography gave **1b** (8.2 g, 65%). $R_{\rm f}$ 0.19 (CHCl₃-CH₃OH, 4 : 1); IR (KBr) $v_{\rm max}$ 3367, 3267, 3117, 1655, 1491, 1340, 1090 cm⁻¹; ¹H-NMR (DMSO-*d*₆) δ 8.19 (1H, s), 7.83 (1H, br), 7.20 (1H, br), 6.08 (1H, t, *J* = 6.4 Hz), 5.21 (1H, d, *J* = 4.2 Hz), 5.18 (1H, m), 4.21 (1H, m), 3.78 (1H, m), 3.62 (1H, m), 3.56 (1H, m), 2.14 (1H, m), 2.00 (1H, m); ¹³C-NMR (DMSO-*d*₆) δ 162.1, 154.3, 139.9, 99.5, 88.1, 86.1, 70.6, 61.6, 41.4. ESI-MS *m/z* calcd for C₉H₁₃ClN₃O₄+ [M + H]+ 262.0589; found 262.0573.

4-N-Acetyl-5-chloro-5'-O-(4, 4'-dimethoxytrityl)-deoxycytidine (3b) Compound **1b** (4.6 g, 17.4 mmol) was treated with acetic anhydride (2.5 ml, 26.1 mmol) in DMF (70 mL) at 45 °C for 9 h. The reaction was quenched with ethanol and the solvents were removed in vacuo. The crude product was

coevaporated three times with pyridine and dissolved in pyridine (174 mL). 4, 4'-Dimethoxytrityl chloride (7.4 g, 19.1 mmol) was added to the reaction mixture and stirred for 5 h at room temperature. After the completion of the reaction, isopropanol (20 mL) was added and the reaction mixture was evaporated. The crude product was extracted with water/ethyl acetate and ethyl acetate layer was collected and evaporated. Crude product was purified by 60 N silica gel chromatography with hexane-ethyl acetate-0.5% pyridine to give **3b** (4.4 g, 42%, 2 steps). R_f 0.24 (CHCl₃-CH₃OH, 9 : 1); IR (KBr) v_{max} 3379, 2934, 1655, 1508, 1252, 1178, 1095, 1034, 829 cm⁻¹; ¹H-NMR (DMSO- d_6) δ 9.89 (1H, br), 8.19 (1H, s), 7.38 (2H, d, J = 7.6 Hz), 7.32-7.18 (7H, m), 6.89-6.88(4H, m), 6.05 (1H, t, J = 6.2 Hz), 5.36 (1H, d, J = 4.6), 4.28 (1H, m), 3.98 (1H, m), 3.72 (6H, s), 3.27-3.18 (2H, m), 2.38-2.34 (1H, m), 2.26 (3H, s), 2.25-2.20 (1H, m); ¹³C-NMR (DMSO- d_6) δ 158.1, 144.7, 135.4, 135.3, 129.7, 128.0, 127.6, 126.8, 113.3, 86.8, 86.2, 86.0, 70.0, 63.2, 55.1, 40.8, 25.0. ESI-MS *m/z* calcd for C₃₂H₃₃ClN₃O₇+ [M + H]+ 606.2002; found 606.2028.

4-N-Acetyl-5-cyano-5'-*O***-(4, 4'-dimethoxytrityl)-deoxycytidine (3c)** 5-Cyanodeoxycytidine^{21, 22} (200 mg, 0.79 mmol) was converted to **3c** in the manner similar to that described for the synthesis of **3b**. 5-Cyanodeoxycytidine and acetic anhydride (164 μ L, 1.74 mmol) were treated in DMF (7.9 mL) at 50 °C for 13 h. After the quenching of the reaction and the removal of the solvents by evaporation, the crude product was treated with 4, 4'-dimethoxytrityl chloride (337 mg, 0.87 mmol) for 14 h. After being quenched with methanol and subsequent extraction, the ethyl acetate layer was evaporated. Collection of the white precipitates from diethylether gave **3c** (373 mg, 79%, 2 steps). *R*_f 0.25 (*n*-hexane-EtOAc, 1 : 4); IR (KBr) ν_{max} 3387, 3056, 2935, 2230, 1670, 1508, 1250, 1034, 829 cm⁻¹; ¹H-NMR (DMSO-*d*₆) δ 10.97 (1H, br), 8.56 (1H, s), 7.37-7.36 (2H, m), 7.31-7.19 (7H, m), 6.89-6.87 (4H, m), 6.00 (1H, t, *J* = 6.1 Hz), 5.33 (1H, d, *J* = 4.6 Hz), 4.18 (1H, m), 4.00 (1H, m), 3.73 (6H, s), 3.27 (1H, m), 3.17 (1H, m), 2.37 (1H, m), 2.24 (1H, m), 2.13 (3H, s); ¹³C-NMR (DMSO-*d*₆) δ 158.1, 144.7, 135.5, 135.3, 129.6,

127.9, 127.6, 126.7, 113.9, 113.3, 87.8, 86.5, 85.9, 85.8, 69.9, 63.4, 55.0, 40.5, 23.8. ESI-MS calcd for C₃₃H₃₂N₄NaO₇+ [M + Na]+ 619.2163; found 619.2106.

4-N-Benzovl-5-bromo-5'-O-(4, 4'-dimethoxytrityl)-deoxycytidine 3'-(2-cvanoethyl N_Ndiisopropylphosphoramidite) (2a) Compound 3a (1.5 g, 2.1 mmol) was coevaporated with anhydrous acetnitrile. To a stirred solution of **3a**, diisopropylamine (179 µL, 1.3 mmol), and 1*H*-tetrazole (89 mg, 1.3 mmol) in dichloromethane (21 mL) was added 2-cyanoethyl N, N, N, N'tetraisopropylphosphoramidite (763 mg, 2.5 mmol). The solution was stirred at room temperature under argon for 5 h. The reaction was diluted with water, and extracted with chloroform. The combined organic layers were washed with water and brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by C-200 silica gel chromatography with ethyl acetate-hexane-0.5% pyridine to give **2a** (1.7 g, 86%). $R_{\rm f}$ 0.39, 0.45 (n-hexane-EtOAc, 3 : 2); ¹H-NMR (DMSO- d_6) δ 12.74 (1H, br), 8.22 (1H, br), 8.14 (2H, br), 7.61 (1H, m), 7.51 (2H, m), 7.40 (2H, m), 7.33-7.26 (6H, m), 7.22 (1H, m), 6.88 (4H, m), 6.11 (1H, m), 4.48 (1H, m), 4.11-4.07 (1H, m), 3.72 (6H, m), 3.70-3.65 (1H, m), 3.62-3.45 (3H, m), 3.29-3.23 (2H, m), 2.75 (1H, t, J = 5.9 Hz), 2.64 (1H, t, J = 5.9 Hz), 2.49-2.31 (2H, m), 1.13-1.10 (8H, m), 0.97 (3H, m); ¹³C-NMR (DMSO-d₆) δ 158.2, 144.7, 135.3, 135.2, 132.9, 129.7, 129.4, 128.9, 128.5, 128.0, 127.7, 127.6, 127.4, 126.8, 119.0, 118.8, 113.3, 112.8, 86.1, 86.0, 85.1, 84.7, 72.7, 72.6, 72.2, 72.1, 63.1, 62.8, 58.4, 58.3, 55.1, 42.6, 42.5, 24.4, 24.3, 24.2, 19.9, 19.8; ³¹P-NMR (DMSO-*d*₆) δ 148.7, 148.4. ESI-MS calcd for C₄₆H₅₁BrN₅NaO₈P+ [M + Na]+ 934.2551; found 934.2515.

4-N-acetyl-5-chloro-5'-O-(4, 4'-dimethoxytrityl)-deoxycytidine 3'-(2-cyanoethyl N,N**diisopropylphosphoramidite) (2b)** Compound **3b** (2.0 g, 3.2 mmol) was converted to **2b** in the same procedure for **2a**. To a stirred solution of **3b**, diisopropylamine (0.28 mL, 2.0 mmol), and 1*H*-tetrazole (139 mg, 2.0 mmol) in dichloromethane (33 mL) was added 2-cyanoethyl N, N, N', N'-

tetraisopropylphosphoramidite (1.2 g, 4.0 mmol). The purification gave **2b** (2.0 g, 73%). R_f 0.51, 0.63 (*n*-hexane-EtOAc, 4 : 1); ¹H-NMR (DMSO- d_6) δ 9.91 (1H, br), 8.22 (1H, s), 7.39-7.38 (2H, m), 7.31-7.22 (7H, m), 6.87 (4H, m), 6.05 (1H, m), 4.50 (1H, m), 4.12-4.08 (1H, m), 3.72 (6H, s), 3.69-3.46 (4H, m), 3.29 (2H, m), 2.75 (1H, t, J = 5.7 Hz), 2.64 (1H, t, J = 5.7 Hz), 2.47-2.36 (2H, m), 2.26 (3H, m), 1.13-1.09 (10H, m), 0.972 (2H, m); ¹³C-NMR (DMSO- d_6) δ 170.0, 158.2 152.5, 149.6, 144.6, 141.8, 135.3, 135.2, 129.7, 128.0, 127.6, 126.8, 123.9, 119.0, 115.7, 113.3, 102.2, 86.8, 86.1, 86.0, 85.2, 84.8, 72.6, 72.4, 72.1, 71.9, 62.9, 62.6, 58.5, 58.4, 58.3, 58.2, 55.1, 43.8, 42.7, 42.6, 25.0, 24.4, 24.3, 23.4, 22.3, 19.8; ³¹P-NMR (DMSO- d_6) δ 148.7, 148.5. ESI-MS calcd for C₄₁H₄₉ClN₅NaO₈P+ [M + Na]+ 828.2899; found 828.2853.

4-*N*-acetyl-5-cyano-5'-*O*-(4, **4'-dimethoxytrityl)-deoxycytidine 3'-(2-cyanoethyl** *N,N***diisopropylphosphoramidite)** (**2c**) Compound **3c** (200 mg, 0.34 mmol) was converted to **2c** in the same procedure for **2a**. To a stirred solution of **3c**, diisopropylamine (28 µL, 0.20 mmol), and 1*H*tetrazole (14 mg, 0.20 mmol) in dichloromethane (3.3 mL) was added 2-cyanoethyl *N, N, N*, *N*'tetraisopropylphosphoramidite (121 mg, 0.40 mmol). The purification gave **2c** (117 mg, 44%). *R*_f 0.63, 0.70 (*n*-hexane-EtOAc, 1 : 4); ¹H-NMR (DMSO-*d*₆) δ 10.99 (1H, br), 8.64 (1H, m), 7.31-7.19 (9H, m), 6.82-6.86 (4H, m), 6.04-5.99 (1H, m), 4.40 (1H, m), 4.12 (1H, m), 3.73 (6H, s), 3.72-3.65 (1H, m), 3.56-3.43 (3H, m), 3.35-3.19 (2H, m), 2.74 (1H, t, *J* = 5.9 Hz), 2.63 (1H, t, *J* = 5.9 Hz) 2.54-2.35 (2H, m), 2.14 (3H, s), 0.96 (3H, m); ¹³C-NMR (DMSO-*d*₆) δ 203.3, 158.2, 144.7, 135.4, 135.3, 135.2, 129.7, 128.0, 127.6, 127.6, 126.8, 118.8, 114.0, 113.3, 87.8, 86.0, 85.9, 85.1, 72.5, 63.2, 62.8, 60.5, 58.4, 58.3, 55.0, 42.7, 42.6, 24.3, 24.2, 19.8; ³¹P-NMR (DMSO-*d*₆) δ 148.8, 148.6. ESI-MS calcd for C₄₂H₄₉N₆NaO₈P+ [M + H]+ 819.3242; found 819.3260.

1-*N***-(***tert***-butoxycarbonyl)-5-methyindol (5)** To a solution of 5-methylindole (3.0 g, 22.8 mmol) and *N*, *N*-dimetylaminopyridine (278 mg, 2.28 mmol) in acetonitrile (50 mL) was added Boc anhydride (6.0

g, 27.3 mmol). After being stirred at room temperature overnight, the mixture was quenched with methanol and the solvent was removed by evaporation. The resulting residue was purified by C-200 silica gel chromatography with ethyl acetate-hexane to give **5** (5.3 g, quant). R_f 0.55 (*n*-Hexane-EtOAc, 9 : 1); IR (CHCl₃) v_{max} 1724 cm⁻¹; ¹H-NMR (DMSO-*d*₆) δ 7.91 (1H, d, *J* = 8.5 Hz), 7.60 (1H, d, *J* = 3.7 Hz), 7.39 (1H, s), 7.12 (1H, d, *J* = 8.5 Hz), 6.61 (1H, d, *J* = 3.7 Hz), 2.37 (3H, s), 1.61 (9H, s); ¹³C-NMR (DMSO-*d*₆) δ 149.1, 131.6, 130.4, 126.1, 125.5, 120.9, 114.3, 109.3, 107.2, 83.6, 27.7, 20.9. ESI-MS calcd for C₁₄H₁₈NO₂+ [M + H]+ 232.1332; found 232.1336.

1-*N*-(*tert*-butoxycarbonyl)-5-methyindol-2-borate (4) To the solution of 5 (8.8 g, 38 mmol) in THF (32 mL) was added triisopropyl borate (13 mL, 57 mmol). The solution was cooled to 0 °C in an ice bath, and LDA (2.0 M, 57 mmol) was added over 1 h. After 2 h, the reaction was poured into the phosphate buffer (pH 6.0) then extracted with chloroform. The organic layer was collected, dried over MgSO₄, and filtered. The filtrate was concentrated under reduced pressure. The residue was precipitated from chloroform to give 4 (10.5 g, quant). $R_{\rm f}$ 0.17 (*n*-hexane-EtOAc, 4 : 1); IR (KBr) $\nu_{\rm max}$ 3373, 3153 ,1690, 1541, 1379, 1121 cm⁻¹; ¹H-NMR (DMSO-*d*₆) δ 7.96 (1H, d, *J* = 8.4 Hz), 7.34 (1H, s), 7.09 (1H, d, *J* = 8.4 Hz), 6.55 (1H, s), 2.37 (3H, s), 1.59 (9H, s); ¹³C-NMR (DMSO-*d*₆) δ 149.9, 134.5, 131.3, 130.9, 125.3, 120.5, 114.2, 112.0, 83.8, 27.6, 21.0. ESI-MS calcd for C₁₄H₁₈BNNaO₄+ [M+H]+ 298.1221; found 298.1265.

10-(β-D-2-deoxyribos-1-yl)-3-methyl-pyrimido[4,5-d]pyrimido[1,6-a]indol (1f) 5-iododeoxycytidine¹⁸ (1.5 g, 4.3 mmol), palladium acetate (29 mg, 0.13 mmol), TPPTS (193 mg, 0.34 mmol), Na₂CO₃ (991 mg, 9.4 mmol) and 4 (2.3 g, 8.5 mmol) were placed in a round-bottomed flask under argon. Degassed H₂O-CH₃CN (1:1, v/v, 85 mL) was added, and the mixture was stirred at 45 °C for overnight. The mixture was evaporated under reduced pressure. The residue was diluted with MeOH, filtered, and concentrated under reduced pressure. The product was precipitated from diethylether to give **1f** (1.0 g, 63%). R_f 0.44 (CHCl₃-CH₃OH, 9 : 1); IR (KBr) v_{max} 3366, 3067, 2924, 1718, 1655, 1352, 1263, 1097, 812 cm⁻¹; ¹H-NMR (DMSO-*d*₆) δ 11.9 (1H, br), 9.31 (1H, s), 8.22 (1H, d, *J* = 8.3 Hz), 7.40 (1H, s), 7.12 (1H, d, *J* = 8.3 Hz), 6.85 (1H, s), 6.15 (1H, t, 5.5 Hz), 5.50 (1H, s), 5.32 (1H, d, *J* = 3.9 Hz), 4.30 (1H, m), 3.91 (1H, m), 3.83 (1H, m), 3.70 (1H, m), 2.40 (3H, s), 2.39-2.34 (1H, m), 2.21-2.18 (1H, m); ¹³C-NMR (DMSO-*d*₆) δ 157.5, 153.3, 140.2, 133.0, 131.5, 130.2, 130.1, 124.6, 119.8, 114.7, 97.0, 95.9, 87.7, 86.7, 68.5, 60.1, 41.1, 21.2. ESI-MS calcd for C₁₉H₁₉N₄O₇+ [M + H]+ 383.1350; found 383.1312.

β-D-1-(3-methyl-pyrimido[4, 5-d]pyrimido[1, 6-a]indol-10-yl)-5-*O***-(4, 4'-dimethoxytrityl)-2**deoxyribose (3f) Compound 1f (0.80 g, 2.1 mmol) was coevaporated three times with pyridine and dissolved in pyridine (20 mL). Dimethoxytrityl chloride (0.99 g, 2.9 mmol) was added to the reaction mixture and stirred for 6 h at room temperature. After the completion of reaction, methanol was added and reaction mixture was evaporated. The crude product was purified by C-200 silica gel chromatography with CHCl₃-MeOH-0.5% pyridine to give **3f** (1.3 g, 89%). *R*_f 0.13 (*n*-hexane-EtOAc, 1 : 4); IR (KBr) ν_{max} 3367, 2934, 1734, 1647,1551, 1508, 1350, 1254, 1177, 1095, 1034, 829 cm⁻¹; ¹H-NMR (DMSO-*d*₆) δ 12.0 (1H, br), 8.68 (1H, s), 8.18 (1H, d, *J* = 8.3 Hz), 7.39 (2H, m), 7.29-7.26 (6H, m), 7.18 (2H, m), 7.09 (1H, m), 6.84 (4H, m), 6.24-6.20 (2H, m), 5.37 (1H, br), 4.24 (1H, br), 4.10 (1H, br), 3.64-3.62 (6H, m), 3.36-3.34 (2H, m), 3.27-3.24 (1H, m), 2.45-2.43 (1H, m), 2.39 (3H, s), 2.31-2.26 (1H, m); ¹³C-NMR (DMSO-*d*₆) δ 158.1, 157.8, 153.3, 147.1, 144.6, 139.1, 135.6, 135.5, 132.8, 131.4, 129.9, 129.7, 129.6, 129.4, 127.9, 127.8, 126.8, 124.7, 119.8, 114.7, 113.3, 97.6, 96.2, 87.2, 86.5, 85.9, 70.3, 63.7, 54.9, 40.9, 21.1. ESI-MS calcd for C₄₀H₃₆N₄NaO₇+ [M + H]+ 707.2476; found 707.2474.

 β -D-1-(3-methyl-pyrimido[4,5-d]pyrimido[1,6-a]indol-10-yl)-5-O-(4, 4'-dimethoxytrityl)-2deoxyribose-3-(2-cyanoetyl N,N-diisopropylphosphoramidite) (2f) Compound 3f (1.0 g, 1.5 mmol) was converted to 2f in the procedure same as that for 2a. To a stirred solution of 3f, diisopropylamine (124 µL, 0.88 mmol), and 1H-tetrazole (61 mg, 0.88 mmol) in dichloromethane (20 mL) was added 2cvanoethyl N. N. N. N. tetraisopropylphosphoramidite (0.53 mg, 1.8 mmol). The purification gave 2f (0.94 g, 73%). $R_{\rm f}$ 0.38, 0.51 (*n*-hexane-EtOAc, 3 : 2); ¹H-NMR (DMSO- d_6) δ 12.0 (1H, br), 8.75 (1H, m), 8.19 (1H, d, J = 8.3 Hz), 7.39 (2H, m), 7.28-7.21 (6H, m), 7.18 (2H, m), 7.10 (1H, d, J = 8.3Hz), 6.88-6.82 (4H, m), 6.32 (1H, m), 6.23 (1H, m), 4.47 (1H, m), 4.22 (1H, m), 3.73-3.29 (12H, m), 2.76 (1H, t, J = 5.9 Hz), 2.64 (1H, t, J = 5.9 Hz), 2.61-2.54 (1H, m), 2.46-2.44 (1H, m), 2.39 (3H, s), 1.11¹³C-NMR (9H, 0.98 (3H, $(DMSO-d_6)$ m), m); δ 158.2, 157.8, 153.2, 147.1, 144.5, 139.5, 139.3, 135.4, 135.3, 132.9, 131.4, 123.0, 129.7, 129.4, 128.0, 127.8, 126.9, 124.8, 119.8, 119.0, 118.8, 114.7, 113.3, 97.8, 96.4, 87.3, 86.1, 86.0, 85.5, 85.2, 73.0, 72. 9, 72.7, 72.5, 63.1, 63.0, 58.4, 58.3, 55.1, 55.0, 43.8, 42.7, 42.6, 24.3, 23.4, 22.3, 21.1, 19.8; ³¹P-NMR $(DMSO-d_6) \delta 150.6, 150.4. ESI-MS calcd for C_{49}H_{53}N_6NaO_8 + [M + H] + 907.3555; found 907.3593.$

Measurement of the pK_a of 5-cyanodeoxycytidine

The p K_a value of the N3 of 5-cyanodeoxycytidine was determined by plotting normalized relative absorbances at 294 nm against pH values. The plots were fitted to the theoretical curve. The p K_a was determined to be 1.7. The concentration of the nucleoside was 70 μ M, and the measurements were carried out in 10 mM citrate buffer, 10 mM NaCl, 10 mM MgCl₂.

$T_{\rm m}$ values of several triplexes in pH 7.0 condition

	TFO-C Z = C HP-cg (X-Y = C-G)	TFO-T Z = T HP-ta (X-Y = T-A)	TFO-C3 $Z = C3$ $HP-gppi$ $(X-Y = G-PPI)$	
	TFO-C	TFO-T	TFO-C3	
HP-c HP-t HP-p	:g : X = C, Y = a : X = T, Y = opi: X = G, Y =	= G A = PPI	TFO-C : Z = C TFO-T : Z = T TFO-C3 : Z = C3	_
5'-d(CAAA	AAAGAYAG	AAAC_T ^{5'-c}		Т)-З'

 $T_{\rm m}$ values of C-G•C+, T-A•T, P-PPI•C3 triads in pH 7.0 condition. 10 mM MgCl ₂, 500 mM NaCl, 10 mM sodium cacodylate. Oligonucleotides were mixed in a 1:1 ratio at a concentration of 2.0 mM.

mqq 20 \$ 60 80 100 120 140 160 ¹³C-NMR (DMSO-d₆) B Í 3а Ó Б 180 ź

i.

S23

S26

mqq 20 40 60 80 100 120 140 160 ¹³C-NMR (DMSO-d₆) Ac , P, OCE N(i-Pr)₂ z Í 2b 180 ó ΰ Ó DMTron

ı

S35

Sec. 201

S38

