An oxidative Prins and Prins/Friedel-Crafts cyclizations for the stereoselective synthesis of dioxabicycles and hexahydro-1\textit{H}-benzo[\textit{f}]isochromenes \textit{via} the benzylic C-H activation

B. V. Subba Reddy,* Prashant Borkar, J. S. Yadav,* P. Purushotham Reddy, A. C. Kunwar, B. Sridhar and René Grée

Table of contents

1. Preparation of starting materials S2-S13
2. Copies of 1H and 13C NMR spectra of products S14-S65
1. Preparation of starting materials
General procedure A: Synthesis of homopropargylic alcohols via opening of ethylene oxide by terminal alkynes

To a cooled (-70 °C) solution of Li-amide (prepared from Li (60 mmol, 1.5 equiv.), 70 mL liquid ammonia and catalytic Fe(NO₃)₃, a solution of terminal alkyne (40 mmol, 1 equiv.) in dry diethyl ether (10 mL) was added dropwise with stirring. After additional stirring of 1h ethylene oxide (60 mmol, 1.5 equiv.) was added. The reaction mixture was stirred for 5-8h. After completion of the reaction as indicated by TLC, the reaction mixture was quenched with NH₄Cl. Ammonia was allowed to evaporate and the reaction mixture was diluted with 25 mL water and extracted with ether (3x25 mL). The organic extract was washed with brine (2x10 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo. The resulting crude product was purified by column chromatography (silica gel, 60-120 mesh) using ethyl acetate/n-hexane gradients to afford pure product.

6-(Tetrahydro-2H-pyran-2-yloxy)hex-3-yn-1-ol

The title compound was prepared in 70% yield according to general procedure A. Liquid; ¹H NMR (300 MHz, CDCl₃): δ 4.65–4.58 (m, 1H), 3.91-3.69 (m, 2H), 3.63 (t, J = 6.0 Hz, 2H), 3.56-3.42 (m, 2H), 2.57-2.22 (m, 5H), 1.96-1.43 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 98.7, 79.3, 77.7, 65.9, 62.3, 61.1, 30.5, 25.3, 23.0, 20.1, 19.4; IR (neat): ν 3391, 2928, 2852, 1154, 1045, 748 cm⁻¹; ESI-MS: m/z 199 (M+H)⁺; HRMS (ESI) calculated for C₁₁H₁₉O₃: 199.1334 (M+H)⁺, Found 199.1321.

7-(Tetrahydro-2H-pyran-2-yloxy)hept-3-yn-1-ol

The title compound was prepared in 72% yield according to general procedure A. Liquid; ¹H NMR (300 MHz, CDCl₃): δ 4.60–4.53 (m, 1H), 3.90-3.73 (m, 2H), 3.63 (t, J = 6.0 Hz, 2H), 3.54-3.36 (m, 2H), 2.44-2.33 (m, 2H), 2.32-2.21 (m, 2H), 1.97 (broad s, 1H), 1.89-1.42 (m,

S3
8H): 13C NMR (75 MHz, CDCl$_3$): δ 98.6, 81.8, 77.2, 65.8, 62.1, 61.3, 30.7, 29.0, 25.6, 23.3, 19.5, 15.7; IR (neat): ν 3382, 2946, 2839, 1158, 1043, 765 cm$^{-1}$; ESI-MS: m/z 213 (M+H)$^+$; HRMS (ESI) calculated for C$_{12}$H$_{21}$O$_3$: 213.1491 (M+H)$^+$, Found 213.1484.

6-Phenylhex-3-yn-1-ol2:

The title compound was obtained in 75% yield according to general procedure A. Liquid; 1H NMR (300 MHz, CDCl$_3$): δ 7.30-7.22 (m, 2H), 7.21-7.13 (m, 3H), 3.57 (t, J = 6.2 Hz, 2H), 2.79 (t, J = 7.5 Hz, 2H), 2.49-2.40 (m, 2H), 2.39-2.31 (m, 2H), 1.59 (broad s, 1H); 13C NMR (75 MHz, CDCl$_3$): δ 140.6, 128.3, 128.2, 126.1, 81.5, 77.4, 61.1, 35.1, 22.9, 20.7; IR (neat): ν 3360, 2927, 1453, 1045, 749, 699 cm$^{-1}$; ESI-MS: m/z 175 (M+H)$^+$; HRMS (ESI) calculated for C$_{12}$H$_{15}$O: 175.1123 (M+H)$^+$, Found 175.1130.

6-(3-Methoxyphenyl)hex-3-yn-1-ol:

The title compound was obtained in 70% yield according to general procedure A. Liquid; 1H NMR (300 MHz, CDCl$_3$): δ 7.21-7.11 (m, 1H), 6.79-6.66 (m, 3H), 3.78 (s, 3H), 3.59 (t, J = 5.7 Hz, 2H), 2.76 (t, J = 7.4 Hz, 2H), 2.49-2.30 (m, 4H), 1.65 (broad s, 1H); 13C NMR (75 MHz, CDCl$_3$): δ 159.5, 142.3, 129.3, 120.7, 114.3, 111.4, 81.7, 77.4, 61.2, 55.1, 35.2, 23.1, 20.8; IR (neat): ν 3391, 2939, 1594, 1489, 1459, 1262, 1158, 1047, 781, 695 cm$^{-1}$; ESI-MS: m/z 205 (M+H)$^+$; HRMS (ESI) calculated for C$_{13}$H$_{17}$O$_2$: 205.1229 (M+H)$^+$, Found 205.1222.
General procedure B: Synthesis of (E)-homoallylic alcohols via trans-reduction of homopropargylic alcohols

To a solution of homopropargylic alcohol obtained by general procedure A (20 mmol, 1 equiv.) in THF (10 mL) was added liquid NH₃ (45 mL) followed by sodium metal (80 mmol, 4 equiv.). The blue coloured reaction mixture was allowed to stir for 8-10h. After the completion of the reaction, the reaction was quenched by NH₄Cl and ammonia was allowed to evaporate. The reaction mixture was diluted with 15 mL water and extracted with ether (3x15 mL). The organic layer was washed with brine (2x10 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo. The resulting crude product was purified by column chromatography (silica gel, 60-120 mesh) using ethyl acetate/n-hexane gradients to afford pure product.

(E)-6-(tetrahydro-2H-pyran-2-yloxy)hex-3-en-1-ol:

The title compound was prepared in 90% yield according to general procedure B. Liquid; ¹H NMR (300 MHz, CDCl₃): δ 5.63-5.38 (m, 2H), 4.59-4.51 (m, 1H), 3.89-3.66 (m, 2H), 3.58 (t, J = 6.0 Hz, 2H), 3.53-3.34 (m, 2H), 2.36-2.19 (m, 4H), 1.91-1.42 (m, 7H); ¹³C NMR (75 MHz, CDCl₃): δ 129.4, 127.5, 98.8, 66.7, 62.2, 61.8, 30.7, 30.4, 27.9, 25.3, 19.4; IR (neat): v 3384, 2926, 2848, 1155, 1042, 752 cm⁻¹; ESI-MS: m/z 201 (M+H)⁺; HRMS (ESI) calculated for C₁₁H₂₁O₃: 201.1491 (M+H)⁺, Found 201.1480.

(E)-7-(tetrahydro-2H-pyran-2-yloxy)hept-3-en-1-ol:

The title compound was prepared in 90% yield according to general procedure B. Liquid; ¹H NMR (300 MHz, CDCl₃): δ 5.61-5.47 (m, 1H), 5.46-5.32 (m, 1H), 4.56-4.49 (m, 1H), 3.89-3.65 (m, 2H), 3.59 (t, J = 6.0 Hz, 2H), 3.52-3.41 (m, 1H), 3.40-3.29 (m, 1H), 2.30-2.18 (m, 2H), 2.17-2.05 (m, 2H), 1.91-1.42 (m, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 132.8, 126.4,
98.7, 66.7, 62.2, 61.9, 35.8, 30.6, 29.2, 29.1, 25.3, 19.5; IR (neat): v 3378, 2927, 2832, 1167,
1060, 754 cm\(^{-1}\); ESI-MS: m/z 215 (M+H)\(^+\); HRMS (ESI) calculated for C\(_{12}\)H\(_{23}\)O\(_3\): 215.1647
(M+H)\(^+\), Found 215.1657.

\((E)-6\)-(Phenyl)hex-3-en-1-ol\(^2\):

The title compound was obtained in 90% yield according to general procedure B. Liquid; \(^1\)H
NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.30-7.14 (m, 5H), 5.61-5.45 (m, 1H), 5.40-5.24 (m, 1H), 3.52
(t, \(J = 6.2\) Hz, 2H), 2.68 (t, \(J = 7.4\) Hz, 2H), 2.41-2.28 (m, 2H), 2.27-2.15 (m, 2H), 1.47
(broad s, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 141.7, 132.9, 128.4, 128.2, 126.7, 125.7, 61.8,
35.8, 35.7, 34.3; IR (neat): v 3354, 2928, 1449, 1046, 970, 744 cm\(^{-1}\); ESI-MS: m/z 177
(M+H)\(^+\); HRMS (ESI) calculated for C\(_{12}\)H\(_{17}\)O: 177.1279 (M+H)\(^+\), Found 177.1285.

\((E)-6\)-(3-Methoxyphenyl)hex-3-en-1-ol\(^2\):

The title compound was obtained in 90% yield according to general procedure B. Viscous
liquid; \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.18-7.09 (m, 1H), 6.74-6.60 (m, 3H), 5.60-5.44 (m,
1H), 5.42-5.25 (m, 1H), 3.77 (s, 3H), 3.53 (t, \(J = 6.0\) Hz, 2H), 2.65 (t, \(J = 7.3\) Hz, 2H), 2.40-
2.27 (m, 2H), 2.26-2.15 (m, 2H), 1.28 (broad s, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 159.5,
143.4, 132.9, 129.2, 126.7, 120.8, 114.2, 111.0, 61.8, 55.1, 35.9, 35.8, 34.2; IR (neat): v
3375, 2936, 1593, 1488, 1458, 1261, 1156, 1047, 781, 696 cm\(^{-1}\); ESI-MS: m/z 207 (M+H)\(^+\);
HRMS (ESI) calculated for C\(_{13}\)H\(_{19}\)O\(_2\): 207.1385 (M+H)\(^+\), Found 207.1378.
General procedure C: Synthesis of (Z)-homoallylic alcohols via cis-reduction of homopropargylic alcohols\(^3\)\(^4\)

To a stirred solution of Ni(OAc)\(_2\).4H\(_2\)O (20 mmol, 1 equiv.) in ethanol (20 mL) under \(H_2\) atmosphere, NaBH\(_4\) (20 mmol, 1 equiv.) in ethanol (20 mL) was added at room temperature. After stirring for 0.5h, ethylenediamine (80 mmol, 4 equiv.) and homopropargylic alcohol obtained by general procedure A (20 mmol, 1 equiv.) in ethanol (20 mL) were added sequentially. The reaction mixture was allowed to stir for 4-6h. After completion of the reaction, ethanol was concentrated and reaction mixture was diluted with 20 mL 10% ethyl acetate in \(n\)-hexane and filtered through celite path, the residue was washed with \(n\)-hexane. The filtrate was concentrated in vacuo and the resulting crude product was purified by column chromatography (silica gel, 60-120 mesh) using ethyl acetate/\(n\)-hexane gradients to afford pure product.

(Z)-6-(tetrahydro-2H-pyran-2-yloxy)hex-3-en-1-ol\(^4\)\(^5\):

The title compound was prepared in 95% yield according to general procedure C. Liquid; \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 5.68-5.37 (m, 2H), 4.61-4.51 (m, 1H), 3.89-3.70 (m, 2H), 3.66-3.30 (m, 4H), 2.45-2.27 (m, 4H), 2.20 (broad s, 1H), 1.91-1.41 (m, 6H); \(^13\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 129.8, 128.1, 98.7, 66.9, 62.3, 61.6, 35.8, 32.9, 30.5, 25.3, 19.5; IR (neat): v 3380, 2925, 2845, 1157, 1046, 752 cm\(^{-1}\); ESI-MS: \(m/z\) 201 (M+H)\(^+\); HRMS (ESI) calculated for C\(_{11}\)H\(_{21}\)O\(_3\): 201.1491 (M+H)\(^+\), Found 201.1488.

(Z)-7-(tetrahydro-2H-pyran-2-yloxy)hept-3-en-1-ol:

The title compound was prepared in 95% yield according to general procedure C. Liquid; \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 5.58-5.45 (m, 1H), 5.44-5.31 (m, 1H), 4.57-4.50 (m, 1H), 3.88-3.77 (m, 1H), 3.72 (td, \(J = 9.8\) and 6.0 Hz, 1H), 3.60 (t, \(J = 6.0\) Hz, 2H), 3.52-3.42 (m, 1H),
3.36 (td, J = 9.8 and 6.0 Hz, 1H), 2.41-2.23 (m, 2H), 2.22-2.11 (m, 2H), 1.92-1.44 (m, 9H);

13C NMR (75 MHz, CDCl$_3$): δ 132.2, 125.9, 98.9, 66.7, 62.4, 62.2, 30.7, 29.5, 25.4, 23.9, 19.6; IR (neat): ν 3375, 2930, 2824, 1161, 1057, 755 cm$^{-1}$; ESI-MS: m/z 215 (M+H)$^+$; HRMS (ESI) calculated for C$_{12}$H$_{23}$O$_3$: 215.1647 (M+H)$^+$, Found 215.1635.

(Z)-6-(Phenyl)hex-3-en-1-ol:

The title compound was obtained in 95% yield according to general procedure C. Liquid; 1H NMR (300 MHz, CDCl$_3$): δ 7.27-7.18 (m, 2H), 7.17-7.09 (m, 3H), 5.60-5.49 (m, 1H), 5.40-5.29 (m, 1H), 3.49 (t, J = 6.4 Hz, 2H), 2.66 (t, J = 7.5 Hz, 2H), 2.44-2.33 (m, 2H), 2.26-2.16 (m, 2H), 1.28 (broad s, 1H); 13C NMR (75 MHz, CDCl$_3$): δ 141.7, 131.8, 128.4, 128.2, 126.0, 125.7, 62.1, 35.8, 30.7, 29.2; IR (neat): ν 3360, 2925, 1446, 1045, 972, 745, 697 cm$^{-1}$; ESI-MS: m/z 177 (M+H)$^+$; HRMS (ESI) calculated for C$_{12}$H$_{17}$O: 177.1279 (M+H)$^+$, Found 177.1270.

(Z)-6-(3-Methoxyphenyl)hex-3-en-1-ol:

The title compound was obtained in 95% yield according to general procedure C. Liquid; 1H NMR (500 MHz, CDCl$_3$): δ 7.15-7.10 (m, 1H), 6.74-6.70 (m, 1H), 6.69-6.63 (m, 2H), 5.58-5.50 (m, 1H), 5.39-5.31 (m, 1H), 3.77 (s, 3H), 3.52 (t, J = 7.0 Hz, 2H), 2.63 (t, J = 8.0 Hz, 2H), 2.42-2.34 (m, 2H), 2.26-2.19 (m, 2H), 1.20 (broad s, 1H); 13C NMR (75 MHz, CDCl$_3$): δ 159.5, 143.4, 131.9, 129.2, 126.0, 120.8, 114.3, 111.0, 62.1, 55.1, 35.8, 30.7, 29.1; IR (neat): ν 3380, 2937, 1595, 1489, 1459, 1263, 1158, 1046, 780, 695 cm$^{-1}$; ESI-MS: m/z 207 (M+H)$^+$; HRMS (ESI) calculated for C$_{13}$H$_{19}$O$_2$: 207.1385 (M+H)$^+$, Found 207.1392.
General procedure D: Synthesis of benzylic ethers of (E)- or (Z)-homoallylic alcohols

1. Synthesis of benzylic ethers of the substrates containing tetrahydropyranyl group10,11

To a stirring mixture of NaH (1.2 mmol, 1.2 equiv.) in THF (10 mL) was added a solution of (E)- or (Z)-homoallylic alcohol (obtained by general procedure B or C) in THF (5 mL) at 0 °C. After additional stirring for 0.5h at room temperature, benzylic bromide (1.1 mmol, 1.1 equiv.) and catalytic TBAI were added and reaction mixture was allowed to stir for 8-10h. After completion of the reaction as indicated by TLC, the reaction mixture was slowly quenched with saturated solution of NH\textsubscript{4}Cl (5-10 mL) and extracted with ethyl acetate (2x10 mL). The organic extracts were washed with brine (2x10 mL), dried over anhydrous Na\textsubscript{2}SO\textsubscript{4} and concentrated in vacuo and the crude product was obtained as a viscous liquid (Yield, 85-90\%). Then to a solution of resulting crude product in methanol (15 mL) was added Amberlyst-15® (200 mg) and the reaction mixture was stirred for 2-4h at ambient temperature. After completion of the reaction as indicated by TLC, the reaction mixture was filtered, washed with methanol and the filtrate was concentrated in vacuo. The resulting crude product was purified by column chromatography (silica gel, 60-120 mesh) using ethyl acetate/n-hexane gradients to afford corresponding pure product.

2. Synthesis of benzylic ethers of the substrates without tetrahydropyranyl group10

To a stirring mixture of NaH (1.2 mmol, 1.2 equiv.) in THF (10 mL) was added a solution of (E)- or (Z)-homoallylic alcohol (obtained by general procedure B or C) in THF (5 mL) at 0 °C. After additional stirring for 0.5h at room temperature, benzylic bromide (1.1 mmol, 1.1 equiv.) and catalytic TBAI were added and reaction mixture was allowed to stir for 8-10h. After completion of the reaction as indicated by TLC, the reaction mixture was slowly quenched with saturated solution of NH\textsubscript{4}Cl (5-10 mL) and extracted with ethyl acetate (2x10 mL). The organic extracts were washed with brine (2x10 mL), dried over anhydrous Na\textsubscript{2}SO\textsubscript{4} and concentrated in vacuo. The resulting crude product was purified by column chromatography (silica gel, 100-200 mesh) using ethyl acetate/n-hexane gradients to afford corresponding pure product.
(E)-6-(4-methoxybenzyl oxy)hex-3-en-1-ol:

The title compound was prepared in 86% yield according to general procedure D1. Liquid; 1H NMR (300 MHz, CDCl$_3$): δ 7.22-7.15 (m, 2H), 6.85-6.78 (m, 2H), 5.59-5.36 (m, 2H), 4.40 (s, 2H), 3.78 (s, 3H), 3.57 (t, $J = 6.2$ Hz, 2H), 3.42 (t, $J = 6.6$ Hz, 2H), 2.34-2.18 (m, 4H), 1.67 (broad s, 1H); 13C NMR (75 MHz, CDCl$_3$): δ 159.1, 130.4, 130.1, 129.2, 128.1, 113.7, 72.5, 69.5, 61.8, 55.2, 36.0, 33.1; IR (neat): ν 3389, 2929, 1471, 1265, 1156, 1036, 784, 699 cm$^{-1}$; ESI-MS: m/z 237 (M+H)$^+$; HRMS (ESI) calculated for C$_{14}$H$_{20}$NaO$_3$: 259.1310 (M+H)$^+$, Found 259.1296.

(Z)-6-(4-methoxybenzyl oxy)hex-3-en-1-ol:

The title compound was prepared in 85% yield according to general procedure D1. Liquid; 1H NMR (300 MHz, CDCl$_3$): δ 7.23-7.15 (m, 2H), 6.85-6.78 (m, 2H), 5.59-5.40 (m, 2H), 4.41 (s, 2H), 3.78 (s, 3H), 3.58 (t, $J = 6.0$ Hz, 2H), 3.42 (t, $J = 6.2$ Hz, 2H), 2.42-2.25 (m, 4H), 1.54 (broad s, 1H); 13C NMR (75 MHz, CDCl$_3$): δ 159.1, 130.2, 129.4, 129.3, 127.7, 113.7, 72.6, 69.0, 61.9, 55.2, 30.7, 28.0; IR (neat): ν 3391, 2934, 1472, 1258, 1152, 1044, 785, 698 cm$^{-1}$; ESI-MS: m/z 237 (M+H)$^+$; HRMS (ESI) calculated for C$_{14}$H$_{21}$O$_3$: 237.1491 (M+H)$^+$, Found 237.1499.
(E)-7-(4-methoxybenzyloxy)hept-4-en-1-ol:

The title compound was prepared in 85% yield according to general procedure D1. Liquid; 1H NMR (300 MHz, CDCl$_3$): δ 7.31-7.20 (m, 2H), 6.92-6.82 (m, 2H), 5.62-5.32 (m, 2H), 4.43 (s, 2H), 3.81 (s, 3H), 3.61 (t, J = 6.4 Hz, 2H), 3.44 (t, J = 6.2 Hz, 2H), 2.37-2.20 (m, 4H), 1.74-1.58 (m, 1H), 1.43 (broad s, 1H); 13C NMR (75 MHz, CDCl$_3$): δ 159.1, 133.3, 130.5, 129.2, 127.1, 113.7, 72.5, 69.7, 62.4, 55.2, 35.9, 32.3, 29.1; IR (neat): ν 3389, 2929, 2857, 1480, 1275, 1170, 1042, 777, 702 cm$^{-1}$; ESI-MS: m/z 251 (M+H)$^+$; HRMS (ESI) calculated for C$_{15}$H$_{23}$O$_3$: 251.1647 (M+H)$^+$, Found 251.1641.

(Z)-7-(benzyloxy)hept-4-en-1-ol:

The title compound was prepared in 88% yield according to general procedure D1. Liquid; 1H NMR (300 MHz, CDCl$_3$): δ 7.35-7.19 (m, 5H), 5.49-5.32 (m, 2H), 4.48 (s, 2H), 3.54 (t, J = 6.0 Hz, 2H), 3.44 (t, J = 6.2 Hz, 2H), 2.40-2.30 (m, 2H), 2.29-1.95 (m, 3H), 1.64-1.52 (m, 1H); 13C NMR (75 MHz, CDCl$_3$): δ 138.0, 130.9, 128.2, 127.6, 127.5, 126.4, 72.8, 69.5, 61.5, 31.9, 27.8, 23.3; IR (neat): ν 3365, 2925, 2842, 1254, 1172, 1046, 755, 692 cm$^{-1}$; ESI-MS: m/z 221 (M+H)$^+$; HRMS (ESI) calculated for C$_{14}$H$_{21}$O$_2$: 221.1542 (M+H)$^+$, Found 251.1555.
(E)-1-(6-(4-methoxybenzyl)oxy)hex-3-enyl)benzene:

The title compound was obtained in 90% yield according to general procedure D2. Liquid; \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.29-7.06 (m, 7H), 6.87-6.76 (m, 2H), 5.57-5.33 (m, 2H), 4.39 (s, 2H), 3.78 (s, 3H), 3.38 (t, \(J = 6.8\) Hz, 2H), 2.65 (t, \(J = 7.3\) Hz, 2H), 2.37-2.19 (m, 4H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 159.1, 142.0, 131.4, 130.6, 129.2, 128.4, 128.2, 127.1, 125.7, 113.7, 72.4, 69.8, 55.2, 35.9, 34.4, 33.0; IR (neat): \(\nu\) 2926, 2837, 1498, 1260, 1080, 832, 749 cm\(^{-1}\); MS (APCI): \(m/z\) 297 (M+H); HRMS (APCI) calculated for C\(_{20}\)H\(_{25}\)O\(_2\): 297.1855 (M+H)+, Found 297.1842.

(E)-5-((6-phenylhex-3-ynyloxy)methyl)benzo[d][1,3]dioxole:

The title compound was obtained in 86% yield according to general procedure D2. Liquid; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.24-7.18 (m, 2H), 7.15-7.08 (m, 3H), 6.80-6.77 (m, 1H), 6.73-6.59 (m, 2H), 5.92 (s, 2H), 5.54-5.34 (m, 2H), 4.35 (s, 2H), 3.38 (t, \(J = 7.0\) Hz, 2H), 2.65 (t, \(J = 7.5\) Hz, 2H), 2.34-2.22 (m, 4H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 147.7, 146.9, 142.0, 132.3, 131.5, 128.4, 128.2, 127.0, 125.7, 121.1, 108.4, 107.9, 100.9, 72.6, 69.8, 35.9, 34.4, 33.0; IR (neat): \(\nu\) 2927, 2840, 1562, 1490, 1442, 1260, 1164, 1051, 780 cm\(^{-1}\); MS (APCI): \(m/z\) 311 (M+H); HRMS (APCI) calculated for C\(_{20}\)H\(_{23}\)O\(_3\): 311.1647 (M+H)+, Found 311.1633.
(Z)-1-(6-(benzyloxy)hex-3-enyl)-3-methoxybenzene:

The title compound was obtained in 88% yield according to general procedure D2. Liquid; 1H NMR (300 MHz, CDCl$_3$): δ 7.36-7.21 (m, 5H), 7.17-7.08 (m, 1H), 6.74-6.61 (m, 3H), 5.52-5.33 (m, 2H), 4.53 (s, 2H), 3.76 (s, 3H), 3.35 (t, J = 6.8 Hz, 2H), 2.62 (t, J = 7.5 Hz, 2H), 2.40-2.23 (m, 4H); 13C NMR (75 MHz, CDCl$_3$): δ 159.5, 143.6, 138.5, 130.7, 129.2, 128.3, 127.6, 127.5, 126.3, 120.9, 114.2, 111.0, 72.8, 69.8, 55.1, 35.8, 29.1, 27.9; IR (neat): v 2922, 2833, 1582, 1487, 1455, 1263, 1168, 1042, 789 cm$^{-1}$; MS (APCI): m/z 297 (M+H)$^+$; HRMS (APCI) calculated for C$_{20}$H$_{25}$O$_2$: 297.1855 (M+H)$^+$, Found 297.1861.

References:

3. Copies of 1H and 13C NMR spectra of products 2a-2i, 4a-4g, 5d, 5g and 7a-7h

Product 2a (Table 2, Entry a):
13C NMR, CDCl$_3$, 75 MHz
Product 2b (Table 2, Entry b):

1H NMR, CDCl$_3$, 500 MHz
Product 2c (Table 2, Entry c):

\(^1\text{H NMR}, \text{CDCl}_3, 500 \text{ MHz}\)
Product 2d (Table 2, Entry d):

1H NMR, CDCl$_3$, 300 MHz
$^{13}\text{C NMR, CDCl}_3$, 75 MHz
Product 2e (Table 2, Entry e):

1H NMR, CDCl$_3$, 300 MHz
Product 2f (Table 2, Entry f):

1H NMR, CDCl$_3$, 300 MHz
Product 2g (Table 2, Entry g):

1H NMR, CDCl$_3$, 600 MHz
Product 2h (Table 2, Entry h):

1H NMR, CDCl$_3$, 300 MHz
13C NMR, CDCl$_3$, 75 MHz
Product 2i (Table 2, Entry i):

1H NMR, CDCl$_3$, 500 MHz
13C NMR, CDCl$_3$, 75 MHz
Product 4a (Table 3, Entry a):

1H NMR, CDCl$_3$, 500 MHz
13C NMR, CDCl$_3$, 75 MHz
Product 4b (Table 3, Entry b):

1H NMR, CDCl$_3$, 500 MHz
13C NMR, CDCl$_3$, 75 MHz
Product 4c (Table 3, Entry c):

1H NMR, CDCl$_3$, 600 MHz
13C NMR, CDCl$_3$, 75 MHz
Product 4d (Table 3, Entry d):
Minor Product 5d (Table 3, Entry d):

1H NMR, CDCl$_3$, 600 MHz
13C NMR, CDCl$_3$, 75 MHz
Product 4e (Table 3, Entry e):

1H NMR, CDCl$_3$, 300 MHz
Product 4f (Table 3, Entry f):

1H NMR, CDCl$_3$, 500 MHz
13C NMR, CDCl$_3$, 75 MHz
Product 4g (Table 3, Entry g):

^1^H NMR, CDCl$_3$, 500 MHz
Minor Product 5g (Table 3, Entry g):
Product 7a (Table 4, Entry a):

$^\text{1}H$ NMR, CDCl$_3$, 600 MHz
13C NMR, CDCl₃, 75 MHz
Product 7b (Table 4, Entry b):

1H NMR, CDCl$_3$, 600 MHz

![NMR spectrum and structure](image-url)
13C NMR, CDCl$_3$, 75 MHz
Product 7c (Table 4, Entry c):

1H NMR, CDCl$_3$, 300 MHz
\[^{13}\text{C} \text{ NMR, CDCl}_3, 75 \text{ MHz}\]
Product 7d (Table 4, Entry d):

1H NMR, CDCl$_3$, 300 MHz
13C NMR, CDCl$_3$, 75 MHz
Product 7e (Table 4, Entry e):

1H NMR, CDCl$_3$, 300 MHz
13C NMR, CDCl$_3$, 75 MHz
Product 7f (Table 4, Entry f):

{1H NMR, CDCl$_3$, 300 MHz
Product 7g (Table 4, Entry g):

1H NMR, CDCl$_3$, 300 MHz
Product 7g (Table 4, Entry g):

1H NMR, CDCl$_3$, 300 MHz
13C NMR, CDCl$_3$, 75 MHz