Supporting Information

Colour-Responsive Fluorescent Oxy Radical Sensors

Baris Yucel,*a Bahar Sanli, a Huseyin Akbulut, a Suheyla Ozbey, b

and Andrew C. Benniston*c

[a] Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey

[b] Hacettepe University, Department of Physics Engineering, 6800 Beytepe, Ankara, Turkey

[c] Newcastle University, Molecular Photonics Laboratory, School of Chemistry, Newcastle upon Tyne, NE1 7RU, UK
Table of Contents for the Supplementary data

Cyclic voltammograms for Q1–Q5 ... S-3–S-7

Ortep for X-ray determined structure of Q2. ... S-8

Computer calculated structures for Q1 and Q2.. S-9

Absorption spectra for Q1–Q5 in MeCN ... S-10

Photophysical properties collected for Q2 in a range of solvents (Table 2) S-11

Absorption and emission profiles recorded for Q1 in MeCN and cyclohexane S-12

Absorption and emission profiles recorded for Q4 in MeCN and cyclohexane S-13

Absorption and emission profiles recorded for Q5 in MeCN and cyclohexane S-14

1H and 13C NMR Spectra of compound 8B .. S-15–S-19

1H and 13C NMR Spectra of compound 9A .. S-20–S-24

1H and 13C NMR Spectra of compound 13A ... S-25–S-29

1H and 13C NMR Spectra of compound Q1 ... S-30–S-35

1H and 13C NMR Spectra of compound Q2 ... S-36–S-41

1H and 13C NMR Spectra of compound Q3 ... S-42–S-46

1H and 13C NMR Spectra of compound Q4 ... S-47–S-53

1H and 13C NMR Spectra of compound Q5 ... S-54–S-60
S1. Cyclic voltammogram for Q1 in dry CH$_3$CN (0.2 M TBATFB) at a glassy carbon electrode at 50 mV s$^{-1}$ using a silver wire reference.
S2. Cyclic voltammogram for Q2 in dry CH3CN (0.2 M TBATFB) at a glassy carbon electrode at 50 mV s⁻¹ using a silver wire reference.
S3. Cyclic voltammogram for Q3 in dry CH$_3$CN (0.2 M TBATFB) at a glassy carbon electrode at 50 mV s$^{-1}$ using a silver wire reference.
S4. Cyclic voltammogram for Q4 in dry CH$_3$CN (0.2 M TBATFB) at a glassy carbon electrode at 50 mV s$^{-1}$ using a silver wire reference.
S5. Cyclic voltammogram for Q5 in dry CH3CN (0.2 M TBATFB) at a glassy carbon electrode at 50 mV s\(^{-1}\) using a silver wire reference.
S6. ORTEP for X-ray determined structure of 14B (Q2). Thermal ellipsoids are shown at 15% probability.
S7. Computer calculated structures for Q1 (top) and Q2 (bottom) using DFT (B3LYP) and the 6-311G basis set.
S8. Absorption spectra recorded for Q1 (black), Q2 (red), Q3 (blue), Q4 (green) and Q5 (cyano) in MeCN.
Table 2. Photophysical properties collected for Q2 in a range of solvents.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>n<sup>a</sup></th>
<th>ε<sup>b</sup></th>
<th>λ<sub>ABS</sub> / nm</th>
<th>λ<sub>EM</sub> / nm</th>
<th>SS / cm<sup>-1</sup></th>
<th>λ<sub>tot</sub> / eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>THF<sup>c</sup></td>
<td>1.405</td>
<td>7.58</td>
<td>439</td>
<td>606</td>
<td>6277</td>
<td>0.39</td>
</tr>
<tr>
<td>EA<sup>d</sup></td>
<td>1.372</td>
<td>6.02</td>
<td>439</td>
<td>606</td>
<td>6277</td>
<td>0.39</td>
</tr>
<tr>
<td>DCM<sup>e</sup></td>
<td>1.431</td>
<td>9.1</td>
<td>446</td>
<td>632</td>
<td>6599</td>
<td>0.41 (0.47)<sup>j</sup></td>
</tr>
<tr>
<td>MeTHF<sup>f</sup></td>
<td>1.403</td>
<td>6.97</td>
<td>441</td>
<td>598</td>
<td>5954</td>
<td>0.37</td>
</tr>
<tr>
<td>Bu<sub>2</sub>O</td>
<td>1.399</td>
<td>3.1</td>
<td>446</td>
<td>585</td>
<td>5328</td>
<td>0.33</td>
</tr>
<tr>
<td>DMF<sup>g</sup></td>
<td>1.431</td>
<td>36.7</td>
<td>430</td>
<td>640</td>
<td>7631</td>
<td>0.47</td>
</tr>
<tr>
<td>MeCN</td>
<td>1.344</td>
<td>37.5</td>
<td>433</td>
<td>644</td>
<td>7567</td>
<td>0.47</td>
</tr>
<tr>
<td>CHX<sup>h</sup></td>
<td>1.426</td>
<td>2.02</td>
<td>467</td>
<td>561</td>
<td>3588</td>
<td>0.22</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.493</td>
<td>2.4</td>
<td>447</td>
<td>595</td>
<td>5564</td>
<td>0.34</td>
</tr>
<tr>
<td>Pentane</td>
<td>1.358</td>
<td>2.1</td>
<td>438</td>
<td>556</td>
<td>4845</td>
<td>0.30</td>
</tr>
<tr>
<td>CCl<sub>4</sub></td>
<td>1.460</td>
<td>2.2</td>
<td>459</td>
<td>587</td>
<td>4750</td>
<td>0.29</td>
</tr>
</tbody>
</table>

^arefractive index, ^bdielectric constant, ^cTetrahydrofuran, ^dethyl acetate, ^edichloromethane,
^fmethyltetrahydrofuran, ^gN,N-dimethylformamide, ^hcyclohexane. ⁱcalculated by λ_{tot} = λ_{ABS} - ∆E
S9. Absorption and emission profiles recorded for Q1 in MeCN (top) and cyclohexane (bottom).
S10. Absorption and emission profiles recorded for Q4 in cyclohexane (top) and MeCN (bottom).
Absorption and emission profiles recorded for Q5 in cyclohexane (top) and MeCN (bottom)
Figure S1. 1H NMR spectrum of compound 8B.
Figure S2. 1H NMR spectrum of compound 8B (8.5–7.0 ppm).
Figure S3. 1H NMR spectrum of compound 8B (2.5–0.0 ppm).
Figure S4. 13C NMR spectrum of compound 8B.
Figure S5. 13C NMR spectrum of compound 8B (200–110 ppm).
Figure S6. 1H NMR spectrum of compound 9A.
Figure S7. 1H NMR spectrum of compound 9A (2.5–0.0 ppm).
Figure S8. 13C NMR spectrum of compound 9A.
Figure S9. 13C NMR spectrum of compound 9A (45–0.0 ppm).
Figure S10. 13C NMR spectrum of compound 9A (155–115 ppm).
Figure S11. 1H NMR spectrum of compound 13A.
Figure S12. 1H NMR spectrum of compound 13A (2.2–0.0 ppm).
Figure S13. 1H NMR spectrum of compound 13A (8.5–5.5 ppm).
Figure S14. 13C NMR spectrum of compound 13A.
Figure S15. 13C NMR spectrum of compound 13A (60–0.0 ppm).
Figure S16. 1H NMR spectrum of compound Q1.
Figure S17. 1H NMR spectrum of compound Q1 (8.8–4.6 ppm).
Figure S18. 1H NMR spectrum of compound Q1 (2.4–0.0 ppm).
Figure S19. 13C NMR spectrum of compound Q1.
Figure S20. 13C NMR spectrum of compound Q1 (80–0.0 ppm).
Figure S21. 13C NMR spectrum of compound Q1 (185–115 ppm).
Figure S22. 1H NMR spectrum of compound Q2.
Figure S23. 1H NMR spectrum of compound Q2 (8.5–7.1 ppm).
Figure S24. 1H NMR spectrum of compound Q2 (5.0–0.0 ppm).
Figure S25. 13C NMR spectrum of compound Q2.
Figure S26. 13C NMR spectrum of compound Q2 (160–115 ppm).
Figure S27. 13C NMR spectrum of compound Q2 (42–21 ppm).
Figure S28. 1H NMR spectrum of compound Q3.
Figure S29. 1H NMR spectrum of compound Q3 (1.55–1.0 ppm).
Figure S30. 1H NMR spectrum of compound Q3 (5.5–2.0 ppm).
Figure S31. 1H NMR spectrum of compound Q3 (0.8–0.0 ppm).
Figure S32. 13C NMR spectrum of compound Q3.
Figure S33. 1H NMR spectrum of compound Q4.
Figure S34. 1H NMR spectrum of compound Q4 (9.0–7.0 ppm).
Figure S35. 1H NMR spectrum of compound Q4 (5.0–0.0 ppm).
Figure S36. 13C NMR spectrum of compound Q4.
Figure S37. 13C NMR spectrum of compound Q4 (160–115 ppm).
Figure S38. 13C NMR spectrum of compound Q4 (60–0.0 ppm).
Figure S39. 13C NMR spectrum of compound Q4 (100–50 ppm).
Figure S40. 1H NMR spectrum of compound Q5.
Figure S41. 1H NMR spectrum of compound Q5 (9.0–7.0 ppm).
Figure S42. 1H NMR spectrum of compound Q5 (5.0–0.0 ppm).
Figure S43. 13C NMR spectrum of compound Q5.
Figure S44. 13C NMR spectrum of compound Q5 (160–115 ppm).
Figure S45. 13C NMR spectrum of compound Q5 (60–0.0 ppm).
Figure S46. 13C NMR spectrum of compound Q5 (85–70 ppm).