Supporting Information for Publication

Synthesis of 2,3,5,6-Tetrasubstituted Tetrahydropyrans via (3,5)-Oxonium-Ene Reaction

Pipas Saha, Anup Bhunia and Anil K. Saikia*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
Fax: +91 361 2690762; e-mail: asaikia@iitg.ernet.in

Table of content:

1. General preparation of the starting materials B1-3 and 1a-d and their spectral data S2-S7
2. 1H, 13C spectra of all compounds and 19F NMR spectrum of 3e, 4e and 11d S8-S120
3. The Crystal parameters and ORTEP diagrams of compounds 4g, 11f, 13 and 14 S121-S124

S-1
General Information: All reagents are commercially obtained. BF$_3$Et$_2$O was distilled over CaH$_2$ prior to use. 1H NMR spectra were recorded in CDCl$_3$ on 400 MHz NMR spectrometer using TMS as internal standard. The 13C and 19F NMR spectra were recorded at 100 MHz and 376 MHz, respectively. For 13C and 19F NMR CDCl$_3$ and C$_6$F$_6$ were used as internal standard. IR spectra were recorded on FT-IR spectrometer. Melting points were measured in open capillary tubes and are uncorrected.

Preparation of ethyl 2-(1-hydroxyalkyl/hydroxy(phenyl)methyl)-5-methylhex-4-enoate 1: The ethyl 2-(1-hydroxyalkyl/hydroxy(phenyl)methyl)-5-methylhex-4-enoate 1 was synthesized starting from β-keto ester A and 1-bromo-3-methylbut-2-ene as shown in Scheme 1.1 Thus the reaction of β-keto ester A with 1-bromo-3-methylbut-2-ene in presence of sodium hydride in THF afforded α-substituted β-keto ester B, which after reduction with sodium borohydride in methanol gives alcohol 1 in 78-84% yields.

The methyl and ethyl substituted β-keto esters B-1 and B-2 afforded two inseparable diastereomers2 1a,b whereas phenyl substituted β-ketoester B-3 gave two separable anti- and syn-diastereomers 1c and 1d, respectively. The structures of all compounds are determined.

![Scheme 1: Synthesis of ethyl 2-(1-hydroxyalkyl/hydroxy(phenyl)methyl)-5-methylhex-4-enoate](image-url)
from IR, 1H, 13C NMR and mass spectroscopy. The stereochemistry of compounds 1c and 1d are determined from coupling constants values.2b,3

References:

General procedure for the synthesis of α-alkyl-β-keto esters (B-1-3): To a suspension of sodium hydride (15.69 mmol, 1 equiv.) in THF (15 mL) at 0 °C was added β-keto ester (15.69 mmol, 1 equiv.) dropwise via syringe. After 20 min, a solution of 3,3-dimethylallyl bromide (17.26 mmol, 1.1 equiv.) in THF (5 mL) was added and the mixture was left at room temperature overnight. The solvent was removed under reduced pressure, and the residue was dissolved in Et$_2$O (10 mL) and washed with brine (25 mL). The organic layer was dried and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography over silica gel to afford the title compounds as colourless oil.

Synthesis of Ethyl 2-acetyl-5-methylhex-4-enoate (B-1): To a suspension of sodium hydride (0.378 g, 15.69 mmol) in THF (15 mL) at 0 °C was added ethyl acetoacetate (2 mL, 15.69 mmol) dropwise via syringe. After 20 min, a solution of 3,3-dimethylallyl bromide (2 mL, 17.26 mmol) in THF (5 mL) was added and the mixture was left at room temperature overnight. The solvent was removed under reduced pressure, and the residue was dissolved in Et$_2$O (10 mL) and washed with brine (25 mL). The organic layer was dried and filtered, and
chromatography over silica gel (10% EtOAc/hexane) to afford ethyl 2-acetyl-5-methylhex-4-enoate B-1 (2.97 g, 95%) as a colourless oil; 1H NMR (400 MHz, CDCl$_3$): δ 1.27 (t, $J = 7.2$ Hz, 3 H), 1.63 (s, 3 H), 1.68 (s, 3 H), 2.22 (s, 3 H), 2.54 (t, $J = 7.2$ Hz, 2 H), 3.43 (t, $J = 7.6$ Hz, 1 H), 4.19 (q, $J = 7.2$ Hz, 2 H), 5.03 (dt, $J = 7.6$ and 1.6 Hz, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 14.1, 17.8, 25.8, 27.0, 29.1, 59.8, 61.3, 119.9, 134.7, 169.7, 203.2; IR (KBr, Neat): 2981, 2930, 1739, 1718, 1205, 1150 cm$^{-1}$. HRMS (APCI) cald. for C$_{11}$H$_{18}$O$_3$ (M+H)$^+$ requires 199.1334; found 199.1337. APCI-MS: m/z (relative intensity): 199.2 ((M+H)$^+$, 43%), 181.1 (100), 169.1 (55), 143.1 (17), 124.1 (43), 107.1 (73).

Ethyl 5-methyl-2-propionylhex-4-enoate (B-2): Colourless oil (3.13 g, 94%); 1H NMR (400 MHz, CDCl$_3$): δ 1.06 (t, $J = 7.2$ Hz, 3 H), 1.26 (t, $J = 7.2$, 3 H), 1.62 (s, 3 H), 1.67 (s, 3 H), 2.47-2.60 (m, 4 H), 3.45 (t, $J = 7.2$ Hz, 1 H), 4.17 (q, $J = 7.2$ Hz, 2 H), 5.02 (dt, $J =7.6$ and 1.6 Hz, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 7.8, 14.2, 17.9, 25.9, 27.2, 35.6, 58.9, 61.4, 120.1, 134.8, 169.9, 206.0; IR (KBr, Neat): 2980, 2937, 1741, 1716, 1198, 1156 cm$^{-1}$. HRMS (APCI) cald. for C$_{12}$H$_{20}$O$_3$ (M$^+$) requires 212.1412; found 212.1408. APCI-MS: m/z (relative intensity): 212.2 ((M+H)$^+$, 100%), 194.7 (65), 168.7 (27), 123.8 (22).

Ethyl 2-benzoyl-5-methylhex-4-enoate (B-3): Colourless oil (3.88 g, 95%); 1H NMR (400 MHz, CDCl$_3$): δ 1.67 (t, $J = 7.2$ Hz, 3 H), 1.62 (s, 3 H), 1.65 (s, 3 H), 2.61-2.78 (m, 2 H), 4.14 (q, $J = 7.2$ Hz, 2 H), 4.30 (t, $J = 7.2$ Hz, 1 H), 5.11 (dt, $J = 7.2$ and 1.6 Hz, 1 H), 7.44-7.50 (m, 2 H), 7.55-7.61 (m, 1 H), 7.97-8.00 (m, 2 H); 13C NMR (100 MHz, CDCl$_3$): δ 14.1, 17.9, 25.8, 27.8, 54.6, 61.4, 120.3, 128.7, 128.8, 133.5, 134.7, 136.4, 169.9, 195.2; IR (KBr, Neat): 2979, 2929, 1737, 1688, 1448, 1379, 1241, 1153 cm$^{-1}$. HRMS (APCI) cald. for C$_{16}$H$_{20}$O$_3$ (M+H)$^+$ requires 261.1490; found 261.1494. APCI-MS: m/z (relative intensity): 261.2 ((M+H)$^+$, 57%), 215.1 (21), 193.1 (23), 169.1 (12), 124.1 (100).
General procedure for the synthesis of Ethyl 2-(1-hydroxyalkyl/hydroxy(phenyl)methyl)-5-methylhex-4-enoate (1a-d): To a solution of α-alkyl-β-keto esters (14.98 mmol, 1 equiv.) in dry MeOH (15 mL) at 0 °C, was added sodium borohydride (39.25 mmol, 2.62 equiv.) in small portions. The reaction mixture was stirred in between 0 °C to 5 °C for 1.5 h. The progress of the reaction was monitored by TLC with ethyl acetate and hexane as eluents. After completion of the reaction, the product was extracted with ethyl acetate (30 mL) and then washed with water (15 mL) and brine (15 mL). The organic layer was dried (Na$_2$SO$_4$) and evaporated to leave the crude product, which was purified by column chromatography over silica gel to give the title compounds.

Synthesis of Ethyl 2-(1-hydroxyethyl)-5-methylhex-4-enoate (1a): To a solution of ethyl 2-acetyl-5-methylhex-4-enoate (2.97 g, 14.98 mmol) in dry MeOH (15mL) at 0 °C, was added sodium borohydride (1.485 g, 39.25 mmol) in small portions. The reaction mixture was stirred in between 0 °C to 5 °C for 1.5 h. The progress of the reaction was monitored by TLC with ethyl acetate and hexane (3:22) as eluents. After completion of the reaction, the product was extracted with ethyl acetate (30 mL) and then washed with water (15 mL) and brine (15 mL). The organic layer was dried (Na$_2$SO$_4$) and evaporated to leave the crude products, which were purified by column chromatography over silica gel to give an inseparable mixture of two diastereomers 1a (2.40 g, 80% overall yield) as a colourless oil; 1H NMR (400 MHz, CDCl$_3$): δ 1.19-1.29 (m, 6 H), 1.62 (s, 3 H), 1.69 (s, 3 H), 2.29-2.47 (m, 3 H), 2.51 (brs 0.5 H), 2.69 (brs, 0.5 H), 3.86-3.96 (m, 0.5 H), 3.98-4.06 (m, 0.5 H), 4.08-4.24 (m, 2 H), 5.04-5.14 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$): δ 14.1(2C), 17.5(2C), 20.5, 21.1, 25.6(2C), 26.7, 27.7, 53.0, 53.1, 60.2, 60.3, 67.8, 67.9, 120.5, 121.1, 133.3, 133.6, 174.7, 175.0; IR (KBr, Neat): 3441, 2972, 2929, 1732, 1640, 1182, 1155 cm$^{-1}$. HRMS (APCI) calcd. for C$_{11}$H$_{20}$O$_3$ (M+H)$^+$ requires 201.1490; found 201.1498. APCI-MS: m/z (relative intensity):
201.2 ((M+H)+, 30%), 137.1 (4), 125.1 (11), 124.1 (100), 123.1 (14), 82.0 (24).

Ethyl 2-(1-hydroxypropyl)-5-methylhex-4-enoate (1b): Colourless oil (2.50 g, 78%); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 0.98 (t, \(J = 7.6\) Hz, 3 H), 1.25 (t, \(J = 7.2\) Hz, 1.5 H), 1.26 (t, \(J = 7.2\) Hz, 1.5 H), 1.45-1.54 (m, 2H), 1.61 (s, 1.5 H), 1.62 (s, 1.5 H), 1.69 (s, 3 H), 2.28-2.50 (m, 3 H), 2.67 (brs, 1 H), 3.56-3.64 (m, 0.5 H), 3.70-3.78 (m,0.5 H), 4.08-4.22 (m, 2 H), 5.04-5.16 (m, 1 H); \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 10.2, 10.3, 14.3(2C), 17.8(2C), 25.8, 26.1, 27.4(2C), 28.3, 28.6, 50.7, 51.2, 60.5(2C), 73.3, 73.4, 120.7, 121.3, 133.6, 134.1, 175.3, 175.5; IR (KBr, Neat): 3456, 2968, 2932, 1731, 1642 , 1183, 1159 cm\(^{-1}\). HRMS (APCI) calcd. for C\(_{12}\)H\(_{22}\)O\(_3\) (M+H)+ requires 215.1647; found 215.1653. APCI-MS: m/z (relative intensity): 215.2 ((M+H)+, 100%), 197.2 (6), 169.1 (8), 151.1 (7), 124.1 (35), 123.1 (14), 82.0 (7).

Synthesis of anti/syn-Ethyl 2-(hydroxy(phenyl)methyl)-5-methylhex-4-enoate (1c & 1d):
To a solution of ethyl 2-benzoyl-5-methylhex-4-enoate (3.90 g, 14.98 mmol) in dry MeOH (15 mL) at 0 \(^\circ\)C, was added sodium borohydride (1.485 g, 39.25 mmol) in small portions. The reaction mixture was stirred in between 0 \(^\circ\)C to 5 \(^\circ\)C for 1.5 h. The progress of the reaction was monitored by TLC with ethyl acetate and hexane (7:43) as eluents. After completion of the reaction, the product was extracted with ethyl acetate (30 mL) and then washed with water (15 mL) and brine (15 mL). The organic layer was dried (Na\(_2\)SO\(_4\)) and evaporated to leave the crude products, which were separated by column chromatography over silica gel to give 1c (1.73 g, 44%) and 1d (1.58 g, 40%) as a colourless oil.

anti-Ethyl 2-(hydroxy(phenyl)methyl)-5-methylhex-4-enoate (1c): Colourless oil (1.73 g, 44%); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 1.18 (t, \(J = 7.2\) Hz, 3 H), 1.50 (s, 3 H), 1.65 (s, 3 H), 2.05 (ddd, \(J = 13.2, 7.6\) and 5.6 Hz, 1 H), 2.25 (ddd, \(J = 14.8, 8.0\) and 6.8 Hz, 1 H), 2.75 (ddd, \(J = 12.8, 8.8, 5.2\) Hz, 1 H), 3.16 (d, \(J = 5.2\) Hz, 1H), 4.11 (q, \(J = 7.2\) Hz, 2 H), 4.80 (dd,
$J = 6.4$ and 4.4 Hz, $1H$), 5.03 (dt, $J = 6.8$ and 1.2 Hz, $1H$), $7.26-7.37$ (m, $5H$); ^{13}C NMR (100 MHz, CDCl$_3$): δ 14.3, 17.8, 25.9, 28.4, 53.3, 60.7, 74.8, 120.2, 126.6, 128.0, 128.6, 134.3, 142.2, 175.2; IR (KBr, Neat): 3461, 2978, 2929, 1729, 1452, 1377, 1180, 1037, 766, 702 cm$^{-1}$. HRMS (APCI) cald. for C$_{16}$H$_{22}$O$_3$ (M$^+$) requires 262.1569; found 262.1573. APCI-MS: m/z (relative intensity): 262.2 (M$^+$, 3%), 244.6 (15), 177.7 (15), 176.7 (100), 123.8 (22).

syn-Ethyl 2-(hydroxy(phenyl)methyl)-5-methylhex-4-enoate (1d): Colourless oil (1.58 g, 40%); 1H NMR (400 MHz, CDCl$_3$): δ 1.11 (t, $J = 7.2$ Hz, $3H$), 1.54 (s, $3H$), 1.64 (s, $3H$), 2.29 (ddd, $J = 14.4$, 8.8 and 5.8 Hz, $1H$), 2.46 (ddd, $J = 14.4$, 8.8 and 5.6 Hz, $1H$), 2.72 (ddd, $J = 10.4$, 5.6 and 4.4 Hz, $1H$), 3.03 (brs, $1H$), 4.02 (q, $J = 7.2$ Hz, $2H$), 4.95 (d, $J = 5.6$ Hz, $1H$), 5.04 (t, $J = 6.8$ Hz, $1H$), 7.24-7.39 (m, $5H$); ^{13}C NMR (100 MHz, CDCl$_3$): δ 14.2, 17.8, 25.9, 26.1, 53.3, 60.7, 74.2, 121.1, 126.4, 127.8, 128.4, 134.0, 141.7, 175.0; IR (KBr, Neat): 3460, 2979, 2930, 1728, 1453, 1375, 1180, 1026, 767, 701 cm$^{-1}$. HRMS (APCI) cald. for C$_{16}$H$_{22}$O$_3$ (M+H)$^+$ requires 263.1647; found 263.1652. APCI-MS: m/z (relative intensity): 263.2 ((M+H)$^+$, 19%), 192.1 (5), 178.1 (15), 177.1 (100), 171.1 (21), 131.1 (13), 124.1 (75).
$^1\text{H} \text{NMR spectra of B-1}$

![NMR Spectra](image)

S-8
13C NMR spectra of B-1

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
\(^1\)H NMR spectra of B-2
13C NMR spectra of B-2
1H NMR spectra of B-3
13C NMR spectra of B-3

![NMR Spectra Image]

S-13
1H NMR spectra of 1a
\(^{13}\)C NMR spectra of 1a
1H NMR spectra of 1b

H$_3$C – OH

\[
\text{\begin{tikzpicture}
\draw[<->,thick] (0,0) -- (0,1);
\draw[<->,thick] (0,0) -- (1,0);
\draw[<->,thick] (1,0) -- (1,1);
\draw[<->,thick] (0,1) -- (1,1);
\draw[<->,thick] (0,1) -- (0,1.5);
\end{tikzpicture}}
\]

CO$_2$Et

S-16
13C NMR spectra of 1b

![NMR Spectra of 1b](image)

S-17
1H NMR spectra of 1c

![NMR Spectrum Image]

S-18
^{13}C NMR spectra of 1c
1H NMR spectra of 1d
13C NMR spectra of 1d
1H NMR spectra of 3a
13C NMR spectra of 3a
1H NMR spectra of 3b
13C NMR spectra of 3b

Sample Information
- Date: Sep 3, 2013
- Temp: Not used
- Solvent: CDCl3
- Spin: Not used
- Acquisition: alfa 20.000
- Acquisition flags: 25125.6

Chemical Shifts (ppm)
- C1: 129.80
- C2: 129.00
- C3: 130.00
- C4: 128.00
- C5: 125.80
- C6: 126.50
- C7: 125.00
- C8: 124.00

Other Parameters
- TMS: 0.00
- Decoupler: LP 300.00
- MUX: 2.00

Plot Details
- Output: PLOT 250
- DM: 250
1H NMR spectra of 3c
$\text{C NMR spectra of 3c}$

![C NMR spectrum of 3c](image)

S-27
1H NMR spectra of 3d

S-28
13C NMR spectra of 3d

![C NMR spectra of 3d](image-url)
\(^1\)H NMR spectra of 3e
13C NMR spectra of 3e

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012

S-31
19F NMR spectra of 3e
1H NMR spectra of 3f
13C NMR spectra of 3f

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
1H NMR spectra of 3g
13C NMR spectra of 3g
1H NMR spectra of 3h

![NMR Spectrum Image]

S-37
13C NMR spectra of 3h
1H NMR spectra of 3i
13C NMR spectra of 3i
1H NMR spectra of 3j
13C NMR spectra of 3j

![C NMR spectra of 3j](image)
3H NMR spectra of 3k
13C NMR spectra of 3k

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
1H NMR spectra of 3l

![H NMR spectra of 3l](image-url)
13C NMR spectra of 3l

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
1H NMR spectra of 3m

![NMR Spectra Image]
13C NMR spectra of 3m

![C NMR spectra of 3m](image-url)
1H NMR spectra of 3n
13C NMR spectra of 3n
1H NMR spectra of 3o
^{13}C NMR spectra of 3o
1H NMR spectra of 3p

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
13C NMR spectra of 3p
1H NMR spectra of 4a
13C NMR spectra of 4a
1H NMR spectra of 4b
13C NMR spectra of 4b

![NMR Spectrum Image]
1H NMR spectra of 4c
13C NMR spectra of 4c
1H NMR spectra of 4d

![H NMR spectrum of 4d](image)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
13C NMR spectra of 4d
1H NMR spectra of 4e

![NMR Spectra Image]

S-63
13C NMR spectra of 4e
19F NMR spectra of 4e
H NMR spectra of 4f

O₂N

<table>
<thead>
<tr>
<th>CH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂Et</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is © The Royal Society of Chemistry 2012
13C NMR spectra of 4f
1H NMR spectra of 4g
13C NMR spectra of 4g

![NMR spectrum image]

S-69
1H NMR spectra of 4h
13C NMR spectra of 4h

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
1H NMR spectra of 4i
13C NMR spectra of 4i
1H NMR spectra of 4j

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is © The Royal Society of Chemistry 2012
13C NMR spectra of 4j

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
1H NMR spectra of 4k
13C NMR spectra of 4k

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012

S-77
\(^1\)H NMR spectra of 41

\[\text{H}_3C - \text{CH}_3 \]

S-78
\(^{13}\)C NMR spectra of 4l
1H NMR spectra of 4m
13C NMR spectra of 4m

![Chemical Structure Image]

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
\(^1\)H NMR spectra of 4n

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
13C NMR spectra of 4n

S-83
1H NMR spectra of 4o
13C NMR spectra of 4o
\(^1\text{H} \text{NMR spectra of 4p} \)
13C NMR spectra of 4p
1H NMR spectra of 11a
13C NMR spectra of 11a
1H NMR spectra of 11b
13C NMR spectra of 11b
1H NMR spectrta of 11c

![NMR Spectra Image]

S-92
13C NMR spectra of 11c
1H NMR spectra of 11d

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
13C NMR spectra of 11d
19F NMR spectra of 11d
^1H NMR spectra of 11e
13C NMR spectra of 11e

![NMR spectra graph](image)
1H NMR spectra of 11f

![NMR Spectra Image]
13C NMR spectra of 11f

![NMR Spectra](image-url)
1H NMR spectra of 11g

![NMR Spectra Image]
13C NMR spectra of 11g

![C NMR spectrum image]
1H NMR spectra of 11h

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
13C NMR spectra of 11h
1H NMR spectra of 12a

![NMR Spectrum Image]

S-105
13C NMR spectra of 12a

![Chemical Structure](image)
1H NMR spectra of 12b
13C NMR spectra of 12b
1H NMR spectra of 12c
13C NMR spectra of 12c
\(^1\)H NMR spectra of 12d
13C NMR spectra of 12d
1H NMR spectra of 12e

![NMR spectrum image]

S-113
13C NMR spectra of 12e
1H NMR spectra of 12f

![NMR Spectra](image)

S-115
13C NMR spectra of 12f
1H NMR spectra of 13
13C NMR spectra of 13
1H NMR spectra of 14
13C NMR spectra of 14

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
The crystal parameters of compound 4g

<table>
<thead>
<tr>
<th></th>
<th>4g-CCDC 819363</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{20}H_{26}O_{5}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>346.41</td>
</tr>
<tr>
<td>T/K</td>
<td>296(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P n a 21</td>
</tr>
<tr>
<td>a/Å</td>
<td>19.8370(10)</td>
</tr>
<tr>
<td>b/Å</td>
<td>15.2026(8)</td>
</tr>
<tr>
<td>c/Å</td>
<td>6.3744(4)</td>
</tr>
<tr>
<td>α/°</td>
<td>90.00</td>
</tr>
<tr>
<td>β/°</td>
<td>90.00</td>
</tr>
<tr>
<td>γ/°</td>
<td>90.00</td>
</tr>
<tr>
<td>V/Å³</td>
<td>1922.35(18)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Abs. Coeff./mm⁻¹</td>
<td>0.085</td>
</tr>
<tr>
<td>Abs. Correction</td>
<td>multi-scan</td>
</tr>
<tr>
<td>GOF on F²</td>
<td>0.943</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]</td>
<td>R₁ = 0.0677</td>
</tr>
<tr>
<td></td>
<td>wR₂ = 0.1644</td>
</tr>
<tr>
<td>R indices [all data]</td>
<td>R₁ = 0.0856</td>
</tr>
<tr>
<td></td>
<td>wR₂ = 0.1735</td>
</tr>
</tbody>
</table>

Figure 1: ORTEP diagram of 4g
The crystal parameters of compound 11f

<table>
<thead>
<tr>
<th></th>
<th>11f-CCDC 819365</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{25}H_{28}O_{5}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>408.47</td>
</tr>
<tr>
<td>T/K</td>
<td>296(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/c</td>
</tr>
<tr>
<td>a/Å</td>
<td>12.0752(3)</td>
</tr>
<tr>
<td>b/Å</td>
<td>15.3970(4)</td>
</tr>
<tr>
<td>c/Å</td>
<td>12.4647(3)</td>
</tr>
<tr>
<td>α/°</td>
<td>90.00</td>
</tr>
<tr>
<td>β/°</td>
<td>104.3910(10)</td>
</tr>
<tr>
<td>γ/°</td>
<td>90.00</td>
</tr>
<tr>
<td>V/Å³</td>
<td>2244.74(10)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Abs. Coeff./mm^{-1}</td>
<td>0.083</td>
</tr>
<tr>
<td>Abs. Correction</td>
<td>multi-scan</td>
</tr>
<tr>
<td>GOF on F²</td>
<td>1.070</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]</td>
<td>R1 = 0.0615</td>
</tr>
<tr>
<td></td>
<td>wR2 = 0.1806</td>
</tr>
<tr>
<td>R indices [all data]</td>
<td>R1 = 0.0759</td>
</tr>
<tr>
<td></td>
<td>wR2 = 0.2203</td>
</tr>
</tbody>
</table>

![Figure 2: ORTEP diagram of 11f](image-url)
The crystal parameters of compound 13

<table>
<thead>
<tr>
<th></th>
<th>13-CCDC 819364</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{23}H_{26}O_{4}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>366.44</td>
</tr>
<tr>
<td>T/K</td>
<td>296(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/n</td>
</tr>
<tr>
<td>a/Å</td>
<td>8.9913(7)</td>
</tr>
<tr>
<td>b/Å</td>
<td>19.6654(14)</td>
</tr>
<tr>
<td>c/Å</td>
<td>11.4452(9)</td>
</tr>
<tr>
<td>α°</td>
<td>90.00</td>
</tr>
<tr>
<td>β°</td>
<td>103.239(4)</td>
</tr>
<tr>
<td>γ°</td>
<td>90.00</td>
</tr>
<tr>
<td>V/Å³</td>
<td>1969.9(3)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Abs.Coeff./mm⁻¹</td>
<td>0.084</td>
</tr>
<tr>
<td>Abs. Correction</td>
<td>Multi-scan</td>
</tr>
<tr>
<td>GOF on F²</td>
<td>1.064</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]</td>
<td>R1 = 0.0667</td>
</tr>
<tr>
<td>R indices [all data]</td>
<td>R1 = 0.0923</td>
</tr>
</tbody>
</table>

Figure 3: ORTEP diagram of 13

S-123
The crystal parameters of compound 14

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C_{23}H_{26}O_{4}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>366.44</td>
</tr>
<tr>
<td>T/K</td>
<td>296(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/c</td>
</tr>
<tr>
<td>a/Å</td>
<td>12.5282(8)</td>
</tr>
<tr>
<td>b/Å</td>
<td>8.7884(6)</td>
</tr>
<tr>
<td>c/Å</td>
<td>18.2013(12)</td>
</tr>
<tr>
<td>α°</td>
<td>90.00</td>
</tr>
<tr>
<td>β°</td>
<td>94.582(2)</td>
</tr>
<tr>
<td>γ°</td>
<td>90.00</td>
</tr>
<tr>
<td>V/Å³</td>
<td>1997.6(2)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Abs. Coeff./mm(^{-1})</td>
<td>0.082</td>
</tr>
<tr>
<td>Abs. Correction</td>
<td>Multi-scan</td>
</tr>
<tr>
<td>GOF on F(^2)</td>
<td>1.373</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]</td>
<td>(R_I = 0.0613)</td>
</tr>
<tr>
<td>R indices [all data]</td>
<td>(R_I = 0.0967)</td>
</tr>
</tbody>
</table>

![Figure 4: ORTEP diagram of 14](image-url)

S-124