Supporting Information for

Calixarene-Induced Aggregation of Perylene Bisimides

Dong-Sheng Guo, Bang-Ping Jiang, Xiang Wang, and Yu Liu*

Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China

E-mail: yuliu@nankai.edu.cn

Synthesis

p-Sulfonatocalix[n]arenes (SCnAs, n = 4-8): SCnA was synthesized referring to the literature process.¹ Briefly, (*p*-tert-Butyl- or H-)calix[n]arenes were reacted in conc. H₂SO₄, followed by treating with inorganic salts.

N, *N*'-bis(propylenetrimethylammonium)-3,4,9,10-perylene bidimide (BPTA-PBI): Briefly, BPTA-PBI was prepared according to the literature method² through two reactive steps as follows: first, *N*, *N*'-bis(propylenedimethylamine)-3,4,9,10-perylene diimide was synthesized according to condensation reaction between 3-dimethylaminopropylamine and perylene tetracarboxylic bisanhydride. Finally, the condensation of *N*, *N*'-bis(propylenedimethylamine)-3,4,9,10-perylene diimide with methyl iodide in the toluene afforded the target compound BPTA-PBI.

Measurements

UV–Vis absorption spectra were recorded in a conventional quartz cell (light path 10 mm) on a Shimadzu UV-3600 spectrophotometer equipped with a PTC-348WI temperature controller to keep the temperature at 25 °C. All solutions were prepared in water.

Fig. S1 UV–Vis titration spectra of BPTA-PBI upon addition of SC*n*As in water: (a) BPTA-PBI (5.0×10^{-6} M), SC4A ($0-4.0 \times 10^{-6}$ M); (b) BPTA-PBI (5.7×10^{-6} M), SC5A ($0-2.5 \times 10^{-6}$ M); (c) BPTA-PBI (5.0×10^{-6} M), SC6A ($0-4.0 \times 10^{-6}$ M); (d) BPTA-PBI (5.0×10^{-6} M), SC8A ($0-8.0 \times 10^{-6}$ M).

Steady-state fluorescence spectra were recorded in a conventional quartz cell $(10 \times 10 \times 45 \text{ mm})$ on a Varian Cary Eclipse equipped with a Varian Cary single cell peltier accessory to maintain the temperature at 25 °C. All solutions were prepared in water. The chromophores were excited at 490 nm.

Fig. S2 Fluorescent titration spectra of BPTA-PBI $(5.0 \times 10^{-6} \text{ M})$ upon addition of SC4A $(0-4.0 \times 10^{-6} \text{ M})$ (a), SC5A $(0-4.0 \times 10^{-6} \text{ M})$ (b), SC6A $(0-4.0 \times 10^{-6} \text{ M})$ (c), and SC8A $(0-4.0 \times 10^{-6} \text{ M})$ (d) in water, excited at 490 nm.

The obvious binding stability constant (K_S) was calculated, utilizing nonlinear least-squares analysis of the UV–Vis spectral titration data by the isodesmic or equal-K model (eq 1). To SC4A and SC5A, two as well as two and a half BPTA-PBI molecules are assumed as one binding unit for simplify, respectively.

$$\Delta A = \frac{\alpha([H] + [G]_0 + 1/K_s) \pm \sqrt{\alpha^2([H] + [G]_0 + 1/K_s)^2 - 4\alpha^2[H][G]_0}}{2}$$
(1)

where $[G]_0$ is the initial concentration of BPTA-PBI (2.5×10^{-6} M for SC4A and 2.3×10^{-6} M for SC5A) and is an invariable value, and [H] is the concentration of SCnA while ΔA is the change of absorbance of BPTA-PBI when [H] is increased compared with the absorbance in absence of SCnA, and α is a sensitive factor of absorbance, also a constant value.

Fig. S3 Plots of the absorbance of BPTA-PBI at 500 nm against the concentration of SC4A (a) and SC5A (b), together with the fitted curve determined by using the nonlinear least-squares curve-fitting on the basis of eq 1, done in Origin 6.1 program.

The dynamic light scattering (DLS) was performed on a laser light scattering spectrometer (BI-200SM) equipped with a digital correlator (BI-9000AT) at 636 nm at a scattering angle of 90° at 25 °C. Sample solutions were prepared by filtering solutions (BPTA-PBI, about 1 mL) through 0.45 μ m filters into clean vials at the concentrations of 1.0×10^{-5} M, and then equivalent volume of pure water, SC4A (5.0×10^{-6} M) or SC5A (4.0×10^{-6} M) was filtered into corresponding vials through 0.45 μ m filters, respectively.

Transmission electron microscopy (TEM) experiments were performed using a Philips Tacnai G2 20 S-TWIN microscope operating at 200 kV. TEM samples (free BPTA-PBI (5.0×10^{-6} M) and the SC5A+BPTA-PBI complex (2.0×10^{-6} M for SC5A and 5.0×10^{-6} M for BPTA-PBI)) were prepared by placing a drop of the solution onto a carbon coated copper grid.

Atomic Force Microscope (AFM) measurements were performed using an AFM (Veeco Company, Multimode, Nano IIIa). AFM samples (the SC5A+BPTA-PBI complex $(4.0 \times 10^{-7}$ M for SC5A and 1.0×10^{-6} M for BPTA-PBI)) were prepared by dropping onto newly clipped mica and then air-dried.

Scanning Electron Microscopy (SEM) images were recorded on a HITACHI S-3500N SEM. SEM samples were solid-state crystal, which were prepared by evaporating aqueous solution of the SC5A+BPTA-PBI complex.

Fig. S4 TEM image of free BPTA-PBI.

X-ray powder diffraction (XRD) patterns were obtained using a Rigaku D/max 2500 diffractometer with Cu K α radiation (40 kV,100 mA). Samples were prepared by addition of SC4A and SC5A into BPTA-PBI solutions, filtered to obtain precipitates, and dried.

Fig. S5 XRD patterns of BPTA-PBI in the absence (black curve) and the presence of SC4A

(red curve) and SC5A (blue curve), respectively.

References

(1) (a) S. Shinkai, S. Mori, T. Tsubaki, T. Sone and O. Manabe, Tetrahedron Lett. 1984, 25,

5315-5318; (b) R. Lamartine, J.-B. Regnouf-de-Vains, P. Choquar and A. Marcillac, World

Patent 1997, WO 97/49677; (c) S. Shinkai, K. Araki, T. Tsubaki, T. Arimura and O. Manabe,

J. Chem. Soc. Perkin Trans. 1987, 1, 2297–2299.

(2) T. Ma, C. Li and G. Shi, *Langmuir* 2008, 24, 43–48.